W. Lin, L. Yuan, J. Feng, X. Cao
SHORT COMMUNICATION
[7] For recent Fe3+-amplified fluorescent sensors, see: a) J. L.
Bricks, A. Kovalchuk, C. Trieflinger, M. Nofz, M. Büschel,
A. I. Tolmachev, J. Daub, K. Rurack, J. Am. Chem. Soc. 2005,
127, 13522–13529; b) Y. Xiang, A. Tong, Org. Lett. 2006, 8,
1549–1552; c) M. Zhang, Y. Gao, M. Li, M. Yu, F. Li, L. Li,
M. Zhu, J. Zhang, T. Yi, C. Huang, Tetrahedron Lett. 2007, 48,
3709–3712; d) J. Mao, L. Wang, W. Dou, X. Tang, Y. Yan, W.
Liu, Org. Lett. 2007, 9, 4567–4570.
[8] a) R. H. Kayser, R. M. Pollack. J. Am. Chem. Soc. 1977, 99,
3379–3387; b) T. Okuyama, H. Shibuya, T. Fueno. J. Am.
Chem. Soc. 1982, 104, 730–736; c) R. M. Pollack, R. H. Kayser,
J. R. Damewood. J. Am. Chem. Soc. 1977, 99, 8232–8237; d)
T. Okuyama, H. Nagamatsu, M. Kitano, T. Fueno. J. Org.
Chem. 1986, 51, 1516–1521.
nyl) Schiff base. The chemodosimeter was readily synthe-
sized in four steps from 2,4-dihydroxybenzaldehyde. The
addition of Fe3+ to 1 induced about 140-fold fluorescence
enhancement. In addition, 1 is highly selective to Fe3+ over
other metal ions. Furthermore, most of the related metal
ions exhibit negligible detection interference. Thus, 1 devel-
oped herein possess favourable features for effective applica-
tions in environmental analysis. The future efforts will focus
on improving its water solubility by structural modifica-
tions so that it can also function in aqueous systems for
biological applications. As most transition-metal ions pos-
sess intrinsic fluorescence quenching properties, it is very
challenging to develop their sensors with fluorescence en-
hancement.[14] However, alternatively, the design approach
for this chemodosimeter should lead to the development of
fluorescence turn-on chemodosimeters for other transition-
metal ions by employing a particular metal-facilitated reac-
tion.
[9] a) A. K. Singh, N. Majumdar. J. Photochem. Photobiol. B.
1997, 39, 140–145; b) R. Alarcon, M. Silva, M. Valcareal. Anal.
Lett. 1982, 15, 891–907.
[10] J. A. Dean, Lange’s Handbook of Chemistry, 13th ed.,
McGraw-Hill, New York, 1987, p. 15 (Section 5).
[11] a) M. Bera, U. Mukhopadhyay, D. Ray. Inorg. Chim. Acta.
2005, 358, 437–443; b) V. Lykourinou-Tibbs, A. Ercan, L.-J.
Ming. Catal. Commun. 2003, 4, 549–553; c) N. P. Sadler, C.-C.
Chuang, R. M. Milburn. Inorg. Chem. 1995, 34, 402–404.
[12] V. Dujols, F. Ford, A. W. Czarnik. J. Am. Chem. Soc. 1997,
119, 7386–7387.
[13] For recent coumarin-based chemosensors for metal ions, see:
a) J. Wang, X. Qian, J. Cui, J. Org. Chem. 2006, 71, 4308–4311;
b) C. C. Woodroofe, S. J. Lippard, J. Am. Chem. Soc. 2003,
125, 11458–11459; c) S. Yamaguchi, I. Yoshimura, T. Kohira,
S. Tamaru, I. Hamach, J. Am. Chem. Soc. 2005, 127, 11835–
11841; d) C. T. Chen, W. P. Huang, J. Am. Chem. Soc. 2002,
124, 6246–6247; e) E. K. Feuster, T. E. Glass, J. Am. Chem.
Soc. 2003, 125, 16174–16175.
Supporting Information (see footnote on the first page of this arti-
cle): Detailed experimental procedures and full characterization
data for all compounds synthesized, and some spectra of the probe.
Acknowledgments
Funding was partially provided by the Scientific Research Founda-
tion for the Returned Overseas Chinese Scholars, State Education
Ministry (2007-24), the Key Project of Chinese Ministry of Educa-
tion and the Hunan University research funds.
[14] K. Rurack. Spectrochim. Acta, Part A. 2001, 57, 2161–2195.
[15] M. Catto, O. Nicolotti, F. Leonetti, A. Carotti, A. D. Favia, R.
Soto-Otero, E. Mendez-Alvarez, A. Carotti, J. Med. Chem.
2006, 49, 4912–4925.
[1] R. J. Lakowicz, Topics in Fluorescence Spectroscopy Vol. 4:
Probe Design and Chemical Sensing; Kluwer Academic Pub-
lishers, New York, 2002.
[2] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M.
Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev.
1997, 97, 1515–1566.
[3] B. Valeur, I. Leray, Coord. Chem. Rev. 2000, 205, 3–40.
[4] P. Aisen, M. Wessling-Resnick, E. A. Leibold, Curr. Opin.
Chem. Biol. 1999, 3, 200–206.
[5] D. Touati, Arch. Biochem. Biophys. 2000, 373, 1–6.
[6] For recent Fe3+-quenched fluorescent sensors, see: a) Y. Ma,
W. Luo, P. J. Quinn, Z. Liu, R. C. Hider, J. Med. Chem. 2004,
47, 6349–6362; b) H. Ouchetto, M. Dias, R. Mornet, E. Lesuis-
sec, J. M. Camadro, Bioorg. Med. Chem. 2005, 13, 1799–1803;
c) C. Wolf, X. Mei, H. K. Rokadia, Tetrahedron Lett. 2004, 45,
7867–7871.
[16] A. Horvath, P. Nussbaumer, B. Wolff, A. Billich, J. Med. Chem.
2004, 47, 4268–4276.
[17] a) I. B. Berlman, Handbook of Fluorescence Spectra of Aro-
matic Molecules, Academic, New York, 1971; b) A. Ajay-
aghosh, P. Carol, S. Sreejith, J. Am. Chem. Soc. 2005, 127,
14962–14963.
[18] According to Figure 2, as little as 1 equiv. of Fe3+ is able to
turn on the fluorescence (1.9-fold) and 12 equiv. of Fe3+ can
enhance the fluorescence up to 140-fold. Similar examples are
well precedented. For example, see: ref.[12] and W. Jiang, Q. Fu,
H. Fan, J. Ho, W. Wang. Angew. Chem. 2007, 119, 8597–8600.
[19] Y. Q. Weng, F. Yue, Y. R. Zhong, B. H. Ye, Inorg. Chem. 2007,
46, 7749–7755.
Received: January 23, 2008
Published Online: March 28, 2008
Publication delayed on authors’ request
2692
www.eurjoc.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2008, 2689–2692