RSC Advances
Paper
blend. Instead of molecular mobility to create a high number
of H-bond pairs, the preliminary structural factor of chain
rigidity seems to be more crucial for deciding the final
emission performances of the blend systems. The molecular
rotations of the luminogenic units in PFN polymer were
supposed to be effectively hampered by the rigid main-chain
framework and addition of PVR continuously introduced
rotational constraints by H-bond interactions and resulted in
the ultimate quantum efficiency of 93% for PFN/PVE(1/200)
with small amounts (y2.3 wt%) of fluorescent PFN compo-
nent. For the present system, the molecular mobility of the
mobile An2Py can be frozen by H-bond interaction, too;
however, to a lesser extent compared to the rigid PFN system
due to the mobile nature of the small-mass An2Py. Therefore,
molecular rotation of the rigid main-chain polymeric lumino-
gens are said to be more efficiently restricted by H-bond
interactions compared to the small-mass organic luminogens.
2 B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. Zhu, J.
Mater. Chem., 2001, 11, 2974.
3 J. Wu, W. Liu, J. Ge, H. Zhang and P. Wang, Chem. Soc. Rev.,
2011, 40, 3483.
4 Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Commun.,
2009, 4332.
5
6
7
J. Liu, J. W. Y. Lam and B. Z. Tang, J. Inorg. Organomet.
Polym. Mater., 2009, 19, 249.
A. Qin, J. W. Y. Lam and B. Z. Tang, Prog. Polym. Sci., 2012,
3
7, 182.
C. J. Bhongale and C. S. Hsu, Angew. Chem., Int. Ed., 2006,
5, 1404.
4
8
9
S. Dong, Z. Li and J. Qin, J. Phys. Chem. B, 2009, 113, 434.
B. K. An, S. K. Kwon, S. D. Jung and S. Y. Park, J. Am. Chem.
Soc., 2002, 124, 14410.
1
1
1
1
1
1
0 Z. Wang, H. Shao, J. Ye, L. Tang and P. Lu, J. Phys. Chem. B,
005, 109, 19627.
1 C. X. Yuan, X. T. Tao, L. Wang, J. X. Yang and M. H. Jiang, J.
Phys. Chem. C, 2009, 113, 6809.
2 Z. Yang, Z. Chi, T. Yu, X. Zhang, M. Chen, B. Xu, S. Liu,
Y. Zhang and J. Xu, J. Mater. Chem., 2009, 19, 5541.
3 W. Z. Yuan, P. Lu, S. Chen, J. W. Y. Lam, Z. Wang, Y. Liu, H.
S. Kwok, Y. Ma and B. Z. Tang, Adv. Mater., 2010, 22, 2159.
4 B. Xu, Z. Chi, Z. Yang, J. Chen, S. Deng, H. Li, X. Li,
Y. Zhang, N. Xu and J. Xu, J. Mater. Chem., 2010, 20, 4135.
5 Z. Zhao, S. Chen, J. W. Y. Lam, C. K. W. Jim, C. Y. K. Chan,
Z. Wang, P. Lu, C. Deng, H. S. Kwok, Y. Ma and B. Z. Tang,
J. Phys. Chem. C, 2010, 114, 7963.
2
Conclusion
An2Py with two pyridine terminal rings was successfully prepared
by a Heck coupling reaction and was used to H-bond with small-
mass BPA and the polymeric PVPh, respectively, to construct
fluorescence systems with enhanced emissions. Primarily, An2Py
was proven to be AIEE-active according to the emission behavior
in the THF/hexane solvent/poor solvent mixtures. With increas-
ing content of H-bond donors (i.e. BPA and PVPh), both An2Py/
BPA and An2Py/PVPh systems show enhanced emissions in the
16 W. Wang, T. Lin, M. Wang, T. X. Liu, L. Ren, D. Chen and
S. Huang, J. Phys. Chem. B, 2010, 114, 5983.
17 K. Kokado and Y. Chujo, Macromolecules, 2009, 42, 1418.
18 A. Pucci, R. Rausa and F. Ciardelli, Macromol. Chem. Phys.,
1
solution and in the solid states. Results from the solution H
NMR spectra suggest that molecular rotations of the An2Py
luminogens are hampered by H-bond interactions. Solution and
solid blends of An2Py/BPA(3/7) and An2Py/PVPh(2/3) possess the
highest emission efficiencies and no more intensity gain is
observed when more H-bond donors were loaded. Polymer PVPh
provides the beneficial viscous chain to impose effective
molecular restriction on the An2Py luminogens; however, the
incomplete H-bond interactions in the highly-crosslinked pro-
ducts give less H-bond pairs and less emission enhancements.
On the other hand, the thorough H-bond interactions and the
highly-crystalline structures in the An2Py/BPA blends furnish
effective restriction on molecular rotation and result in
fluorescence with intensity comparable to the polymeric An2Py/
PVPh system. The ultimate emission efficiencies (69 vs. 71%) are
therefore quite close for both systems.
2008, 209, 900.
1
9 J. Liu, Y. Zhong, J. W. Y. Lam, P. Lu, Y. Hong, Y. Yu, Y. Yue,
M. Faisal, H. H. Y. Sung, I. D. Williams, K. S. Wong and B.
Z. Tang, Macromolecules, 2010, 43, 4921.
2
2
0 C. T. Lai and J. L. Hong, J. Phys. Chem. B, 2010, 114, 10302.
1 C. A. Chou, R. H. Chien, C. T. Lai and J. L. Hong, Chem.
Phys. Lett., 2010, 501, 80.
2
2
2
2 T. Liu, X. Tao, F. Wang, X. Dang, D. Zou, Y. Ren and
M. Jiang, J. Phys. Chem. C, 2008, 112, 3975.
3 P. Chen, R. Lu, P. Xue, T. Xu, G. Chen and Y. Zhao,
Langmuir, 2009, 25, 8395.
4 F. Camerel, L. Bonardi, M. Schmutz and R. Ziessel, J. Am.
Chem. Soc., 2006, 128, 4548.
25 P. Zhang, H. Wang, H. Liu and M. Li, Langmuir, 2010, 26,
10183.
2
6 H. H. Fang, Q. D. Chen, J. Yang, H. Xia, B. R. Gao, J. Feng,
Y. G. Ma and H. B. Sun, J. Phys. Chem. C, 2010, 114, 11958.
7 Z. Yang, Z. Chi, B. Xu, H. Li, X. Zhang, X. Li, S. Liu,
Y. Zhang and J. Xu, J. Mater. Chem., 2010, 20, 7352.
2
Acknowledgements
2
2
8 C. T. Lai and J. L. Hong, J. Mater. Chem., 2012, 22, 9546.
9 H. Li, Z. Chi, B. Xu, X. Zhang, Z. Yang, X. Li, S. Liu,
Y. Zhang and J. Xu, J. Mater. Chem., 2010, 20, 6103.
We appreciate the financial support from National Science
Council, Taiwan under the contract no. 101-2221-E-110-022.
3
3
0 S. Dong, Z. Li and J. Qin, J. Phys. Chem. B, 2009, 113, 434.
1 Q. Zeng, Z. Li, Y. Dong, C. Di, A. Qin, Y. Hong, L. Ji, Z. Zhu,
C. Jim and G. Yu, Chem. Commun., 2007, 70.
References
3
2 J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I.
D. Williams, D. Zhu and B. Z. Tang, Chem. Mater., 2003, 15,
1
J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H.
S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem.
Commun., 2001, 1740.
1535.
This journal is ß The Royal Society of Chemistry 2013
RSC Adv., 2013, 3, 6930–6938 | 6937