Journal of Medicinal Chemistry
ARTICLE
described above.19 Blank experiments were done in which no activator has
been added to the blood red cells treated as described above, and CA
activity determined in such conditions has been taken as 100%.27
(6) (a) Domsic, J. F.; Avvaru, B. S.; Kim, C. U.; Gruner, S. M.;
Agbandje-McKenna, M.; Silverman, D. N.; McKenna, R. Entrapment of
carbon dioxide in the active site of carbonic anhydrase II. J. Biol. Chem.
2008, 283, 30766–307681. (b) Fisher, S. Z.; Maupin, C. M.; Budayova-
Spano, M.; Govindasamy, L.; Tu, C. K.; Agbandje-McKenna, M.;
Silverman, D. N.; Voth, G. A.; McKenna, R. Atomic crystal and
molecular dynamics simulation structures of human carbonic anhydrase
II: insights into the proton transfer mechanism. Biochemistry 2007, 42,
2930–2937. (c) Winum, J. Y.; Rami, M.; Scozzafava, A.; Montero, J. L.;
Supuran, C. Carbonic Anhydrase IX: a new druggable target for the
design of antitumor agents. Med. Res. Rev. 2008, 28, 445–463. (d)
Supuran, C. T.; Scozzafava, A.; Casini, A. Carbonic Anhydrase Inhibi-
tors. Med. Res. Rev. 2003, 23, 146–189.
’ AUTHOR INFORMATION
Corresponding Author
*For J.-Y.W.: E-mail, jean-yves.winum@univ-montp2.fr. For
C.T.S.: phone, 39-055-4573005; fax, 39-055-4573385; E-mail,
claudiu.supuran@unifi.it.
’ ACKNOWLEDGMENT
(7) Maresca, A.; Temperini, C.; Vu, H.; Pham, N. B.; Poulsen, S. A.;
Scozzafava, A.; Quinn, R. J.; Supuran, C. T. Non-zinc mediated inhibi-
tion of carbonic anhydrases: coumarins are a new class of suicide
inhibitors. J. Am. Chem. Soc. 2009, 131, 3057–3062.
This research was financed in part by a grant of the 7th
Framework Programme of the European Union (Metoxia project, to
C.T.S. and A.S.) and by the grant CNRS MIE-2007 (Programme
“Maladies Infectieuses Emergentes”Centre National de la Recherche
Scientifique, France, to J.-Y.W).
(8) (a) Briganti, F.; Mangani, S.; Orioli, P.; Scozzafava, A.; Vernaglione,
G.; Supuran, C. T. Carbonic anhydrase activators: X-ray crystallographic
and spectroscopic investigations for the interaction of isozymes I and II
with histamine. Biochemistry 1997, 36, 10384–10392. (b) Temperini, C.;
Innocenti, A.; Scozzafava, A.; Supuran, C. T. Carbonic anhydrase activators.
Kinetic and X-ray crystallographic study for the interaction of D- and
L-tryptophan with the mammalian isoforms I-XIV. Bioorg. Med. Chem.
2008, 16, 8373–8378. (b) Temperini, C.; Scozzafava, A.; Puccetti, L.;
Supuran, C. T. Carbonic anhydrase activators: X-ray crystal structure of the
adduct of human isozyme II with L-histidine as a platform for the design of
stronger activators. Biorg. Med. Chem. Lett. 2005, 15, 5136–5141.
(9) (a) Tu, C. K.; Silverman, D. N.; Forsman, C.; Jonsson, B. H.;
Lindskog, S. Role of histidine 64 in the catalytic mechanism of human
carbonic anhydrase II studied with a site-specific mutant. Biochemistry
1989, 28, 7913–7918. (b) Behravan, G.; Jonasson, P.; Jonsson, B. H.;
Lindskog, S. Structural and functional differences between carbonic
anhydrase isoenzymes I and II as studied by site-directed mutagenesis.
Eur. J. Biochem. 1991, 198, 589–592. (c) Engstrand, C.; Jonsson, B. H.;
Lindskog, S. Eur. J. Biochem. 1995, 229, 696–702. (d) Almstedt, K.;
Rafstedt, T.; Supuran, C. T.; Carlsson, U.; Hammarstr€om, P. Small-
molecule suppression of misfolding of mutated human carbonic anhy-
drase II linked to marble brain disease. Biochemistry 2009, 48, 5358–
5364.
(10) (a) Elder, I.; Han, S.; Tu, C.; Steele, H.; Laipis, P. J.; Viola, R. E.;
Silverman, D. N. Activation of carbonic anhydrase II by active-site
incorporation of histidine analogs. Arch. Biochem. Biophys. 2004, 421,
283–289. (b) Liang, Z.; Xue, Y.; Behravan, G.; Jonsson, B. H.; Lindskog,
S. Importance of the conserved active-site residues Tyr7, Glu106, and
Thr199 for the catalytic function of human carbonic anhydrase II. Eur.
J. Biochem. 1993, 211, 821–827.
(11) (a) Temperini, C.; Scozzafava, A.; Supuran, C. T. Carbonic
anhydrase activation and the drug design. Curr. Pharm. Des. 2008, 14,
708–715. (b) Ilies, M.; Scozzafava, A.; Supuran, C. T. Carbonic anhy-
drase activators. In Carbonic Anhydrase—Its Inhibitors and Activators,
Supuran, C. T.; Scozzafava, A.; Conway, J., Eds., CRC Press: Boca Raton
FL, 2004; pp 317-352; (c) Supuran, C. T.; Scozzafava, A. Activation
of carbonic anhydrase isozymes. In The Carbonic Anhydrases—New
Horizons; Chegwidden, W. R., Carter, N., Edwards, Y., Eds.; Birkhauser
Verlag: Basel, Switzerland, 2000; pp 197-219 ;(d) Temperini, C.;
Innocenti, A.; Scozzafava, A.; Mastrolorenzo, A.; Supuran, C. T. Car-
bonic anhydrase activators: L-adrenaline plugs the active site entrance of
isozyme II, activating better isoforms I, IV, VA, VII, and XIV. Bioorg.
Med. Chem. Lett. 2007, 17, 628–635.
’ ABBREVIATIONS USED
BOP, benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium
hexa-fluorophosphate; CA, carbonic anhydrase; CAA, CA activator;
CAI, CA inhibitor; DIEA, diisopropylethylamine; EDX, energy dis-
persive X-ray analysis; GNP, gold nanoparticle; MRI, magnetic
resonance imaging; NP, nanoparticle; TEM, transmission electron
microscopy
’ REFERENCES
(1) Stiti, M.; Cecchi, A.; Rami, M.; Abdaoui, M.; Barragan-Montero,
V.; Scozzafava, A.; Guari, Y.; Winum, J. Y.; Supuran, C. T. Carbonic
anhydrase inhibitor coated gold nanoparticles selectively inhibit the
tumor-associated isoform IX over the cytosolic ubiquitous isozymes I
and II. J. Am. Chem. Soc. 2008, 130, 16130–16131.
(2) (a) Bowman, M. C.; Ballard, T. E.; Ackerson, C. J.; Feldheim,
D. L.; Margolis, D. M.; Melander, C. Inhibition of HIV fusion with
multivalent gold nanoparticles. J. Am. Chem. Soc. 2008, 130, 6896–6897.
(b) Xie, J.; Chen, K.; Lee, H. Y.; Xu, C.; Hsu, A. R.; Peng, S.; Chen, X.;
Sun, S. Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their
specific targeting to integrin alpha(v)beta3-rich tumor cells. J. Am. Chem.
Soc. 2008, 130, 7542–7543. (c) Ansell, S. M.; Johnstone, S. A.; Tardi,
P. G.; Lo, L.; Xie, S.; Shu, Y.; Harasym, T. O.; Harasym, N. L.; Williams,
L.; Bermudes, D.; Liboiron, B. D.; Saad, W.; Prud’homme, R. K.; Mayer,
L. D. Modulating the therapeutic activity of nanoparticle delivered
paclitaxel by manipulating the hydrophobicity of prodrug conjugates.
J. Med. Chem. 2008, 51, 3288–3296.
(3) Mizusawa, K.; Ishida, Y.; Takaoka, Y.; Miyagawa, M.; Tsukiji, S.;
Hamachi, I. Disassembly-driven turn-on fluorescent nanoprobes for
selective protein detection. J. Am. Chem. Soc. 2010, 132, 7291–7293.
(4) Innocenti, A.; Durdagi, S.; Doostdar, N.; Strom, T. A.; Barron,
A. R.; Supuran, C. T. Nanoscale enzyme inhibitors: fullerenes inhibit
carbonic anhydrase by occluding the active site entrance. Bioorg. Med.
Chem. 2010, 28, 2822–2828.
(5) (a) Supuran, C. T. Carbonic anhydrases: novel therapeutic
applications for inhibitors and activators. Nature Rev. Drug Discovery
2008, 7, 168–181. (b) Supuran, C. T. Carbonic anhydrase inhibitors.
Bioorg. Med. Chem. Lett. 2010, 20, 3467–3474. (c) Supuran, C. T.
Carbonic anhydrases as drug targets—general presentation. In Drug
Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease
Applications; Supuran, C. T., Winum, J. Y., Eds.; Wiley: Hoboken, NJ,
2009; pp 15-38. (d) Barrese, A. A., III; Genis, C.; Fisher, S. Z.; Orwenyo,
J. N.; Kumara, M. T.; Dutta, S. K.; Phillips, E.; Kiddle, J. J.; Tu, C.;
Silverman, D. N.; Govindasamy, L.; Agbandje-McKenna, M.; McKenna,
R.; Tripp, B. C. Inhibition of carbonic anhydrase II by thioxolone: a
mechanistic and structural study. Biochemistry 2008, 47, 3174–3179.
(12) (a) Temperini, C.; Vullo, D.; Scozzafava, A.; Supuran, C. T.
Carbonic anhydrase activators. Activation of isoforms I, II, IV, VA, VII,
and XIV with L- and D-phenylalanine and crystallographic analysis of
their adducts with isozyme II: sterospecific recognition within the active
site of an enzyme and its consequences for the drug design. J. Med. Chem.
2006, 49, 3019–3027. (b) Nishimori, I.; Onishi, S.; Vullo, D.; Innocenti,
A.; Scozzafava, A.; Supuran, C. T. Carbonic anhydrase activators. The
first activation study of the human secretory isoform VI. Bioorg. Med.
1176
dx.doi.org/10.1021/jm101284a |J. Med. Chem. 2011, 54, 1170–1177