Angewandte Chemie International Edition
10.1002/anie.202015703
RESEARCH ARTICLE
(
>90%) Z-2 and Z-3. This results in nearly an order of magnitude
[11] Z. Qiu, H. Yu, J. Li, Y. Wang, Y. Zhang, Chem. Commun. 2009, 3342-
3344.
reduction in the elastic (G’) and loss (G’’) modulus. Detailed
microscopy studies, including cryo-TEM imaging, suggests that
this transition is associated with significant thinning of the gel
fibers and in the case of 3, eventually irreversible precipitation or
crystallization. Noting that the initially formed gel from E-2 is
[
12] a) Y.-L. Zhao, J. F. Stoddart, Langmuir 2009, 25, 8442-8446; b) S.
Tamesue, Y. Takashima, H. Yamaguchi, S. Shinkai, A. Harada, Angew.
Chem. Int. Ed. 2010, 49, 7461-7464; c) G. Davidson-Rozenfeld, L.
Stricker, J. Simke, M. Fadeev, M. Vázquez-González, B. J. Ravoo, I.
Willner, Polym. Chem. 2019, 10, 4106-4115; d) A. Tabet, R. A. Forster,
C. C. Parkins, G. Wu, O. A. Scherman, Polym. Chem. 2019, 10, 467-
472.
E
different from those formed from photoisomerized E-2 PSS , the
rheological properties of 2 are reversible multiple times upon
repeated switching between a 365 and 520 nm light sources,
whereas for 3 they are not, and precipitation is observed. These
observation highlight that gelation is a kinetic process and the
starting points when gelation is triggered by a pH switch are
significantly different from when the aggregates are
photoisomerized. The light inducted gel→sol transition for gels
formed from 2 and 3 can be used to accelerate more than 20-
fold the release of an encapsulated dye in these gels,
suggesting that these low-molecular hydrogelator could be used
for light-controlled release systems in water at physiologically
relevant pH. The insight that the structural simple and
photoswitchable hydrogelators 2 and 3 have given here into the
mechanism of hydrogel assembly and disassembly is likely to
aid the design of other related light-controlled materials and
systems in the future.
[13] J. T. van Herpt, M. C. Stuart, W. R. Browne, B. L. Feringa, Chem.–Eur.
J. 2014, 20, 3077-3083.
[
14] a) J. E. Stumpel, B. Ziꢀłkowski, L. Florea, D. Diamond, D. J. Broer, A. P.
Schenning, ACS Appl. Mater. Inter. 2014, 6, 7268-7274; b) C. Li, A.
Iscen, L. C. Palmer, G. C. Schatz, S. I. Stupp, J. Am. Chem. Soc. 2020,
142, 8447-8453
[
15] a) K. Peng, I. Tomatsu, A. Kros, Chem. Commun. 2010, 46, 4094-4096;
b) A. A. Beharry, G. A. Woolley, Chem. Soc. Rev. 2011, 40, 4422-4437;
c) Y. Huang, Z. Qiu, Y. Xu, J. Shi, H. Lin, Y. Zhang, Org. Bio. Chem.
2011, 9, 2149-2155; d) T. M. Doran, D. M.; Ryan, B. L. Nilsson, Polym.
Chem. 2014, 5, 241-248; e) A. M. Rosales, K. M. Mabry, E. M. Nehls, K.
S. Anseth, Biomacromol. 2015, 16, 798-806; f) Z. L. Pianowski, J.
Karcher, K. Schneider, Chem. Commun. 2016, 52, 3143-3146; g) F. Xie,
L. Qin, M. A. Liu, Chem. Commun. 2016, 52, 930-933; h) I.-N. Lee, O.
Dobre, D. Richards, C. Ballestrem, J. M. Curran, J. A. Hunt, S. M.
Richardson, J. Swift, L. S. Wong, ACS. Appl. Mater. Inter. 2018, 10,
7765-7776; i) A. M. Rosales, C. B. Rodell, M. H. Chen, M. G. Morrow, K.
S. Anseth, J. A. Burdick, Bioconjugate Chem. 2018, 29, 905-913; j) M.
E. Roth‐Konforti, M. Comune, M. Halperin‐Sternfeld, I. Grigoriants, D.
Shabat, L. Adler‐Abramovich, Macromol. Rapid. Commun. 2018, 39,
Acknowledgements
1800588; k) C. Wang, K. Hashimoto, R. Tamate, H. Kokubo, M.
Watanabe, Angew. Chem. Int. Ed. 2018, 57, 227-230; l) L. Li, J. M.
Scheiger, P. A. Levkin, Adv. Mater. 2019, 31, 1807333; m) M. S. de
Luna, V. Marturano, M. Manganelli, C. Santillo, V. Ambrogi, G.
Filippone, P. Cerruti, J. Colloid. Interf. Sci. 2020, 568, 16-24; n) N.
Higashi, R. Yoshikawa, T. Koga, RSC Adv. 2020, 10, 15947-15954.
16] F. Tong, S. Chen, Z. Li, M. Liu, R. O. Al-Kaysi, U. Mohideen, Y. Yin, C.
J. Bardeen, Angew. Chem. Int. Ed. 2019, 58, 15429-15434.
This work was supported by the Australian Research Council
(FT170100094 to JEB and CE140100036 & DP190101892 to
PT) and UNSW Sydney through a PhD TFS award to FAL. We
acknowledge access and support from the facilities of the Mark
Wainwright Analytical Centre at UNSW Sydney. We like to thank
Dr Shyamal Prasad at UNSW Sydney for LED power
measurements and Mr. Ashish Kumar at Anton Paar.
[
[
17] a) J. V. Accardo, J. A. Kalow, Chem. Sci. 2018, 9, 5987-5993; b) J.
Karcher, Z. L. Pianowski, Chem.– Eur. J. 2018, 24, 11605-11610; c) F.
Zhao, A. Bonasera, U. Nöchel, M. Behl, D. Bléger, Macromol. Rapid.
Commun. 2018, 39, 1700527; d) X. Tong, Y. Qiu, X. Zhao, B. Xiong, R.
Liao, H. Peng, Y. Liao, X. Xie, Soft Matter 2019, 15, 6411-6417.
18] C. W. Chu, L. Stricker, T. M. Kirse, M. Hayduk, B. J. Ravoo, Chem.–
Eur. J. 2019, 25, 6131-6140.
Keywords: arylazopyrazole • gels • low molecular weight gelator
•
photoswitch • self-assembly
[
[
[
[
[
[
1]
2]
K. Yonekura, S. Maki, D. G. Morgan, D. J. DeRosier, F. Vonderviszt, K.
19] a) C. E. Weston, R. D. Richardson, P. R. Haycock, A. J. P. White, M. J.
Fuchter, J. Am. Chem. Soc. 2014, 136, 11878-11881; b) J. Calbo, C. E.
Weston, A. J. P. White, H. S. Rzepa, J. Contreras-García, M. J. Fuchter,
J. Am. Chem. Soc. 2017, 139, 1261-1274; c) S. Crespi, N. A. Simeth, B.
König, Nat. Rev. Chem. 2019, 3, 133-146; d) R. S. Gibson, J. Calbo, M.
J. Fuchter, Chem. Photo. Chem. 2019, 3, 372-377; e) M. A. Gerkman,
R. S. Gibson, J. Calbo, Y. Shi, M. J. Fuchter, G. G. Han, J. Am. Chem.
Soc. 2020, 142, 8688-8695.
Imada, K Namba, Science 2000, 290, 2148-2152.
E. J. Cohen, J. L. Ferreira, M. S. Ladinsky, M. Beeby, K. T. Hughes,
Science 2017, 356, 197-200.
3]
4]
D. Dattler, G. Fuks, J. Heiser, E. Moulin, A. Perrot, X. Yao, N.
Giuseppone, Chem. Rev. 2019, 120, 310-433.
a) X. Du, J. Zhou, J. Shi, B. Xu, Chem. Rev. 2015, 115, 13165-13307;
(b) E. R. Draper, D. J. Adams, Chem 2017, 3, 390-410; c) S. Mondal, S.
Das, A. K. Nandi, Soft Matter 2020, 16, 1404-1454.
[
[
20] C.-W. Chu, B. J. Ravoo, Chem. Commun. 2017, 53, 12450-12453.
21] a) D. K. Kumar, D. A. Jose, P. Dastidar, A. Das, Langmuir, 2004, 20,
[
5]
a) M. D. Segarra-Maset, V. J. Nebot, J. F. Miravet, B. Escuder, Chem.
Soc. Rev. 2013, 42, 7086-7098; b) J. Hoque, N. Sangaj, S. Varghese,
Macromol. Biosci. 2019, 19, 1800259.
10413-10418. b) J. Shi, Y. Gao, Z. Yang, B. Xu, Beilstein J. Org. Chem.
2011, 7, 167-172; b) A. J. Kleinsmann, B. J. Nachtsheim, Chem.
[
[
6]
7]
J. Hu, S. Liu, Acc. Chem. Res. 2014, 47, 2084-2095.
M. Ikeda, T. Tanida, T. Yoshii, K. Kurotani, S. Onogi, K. Urayama, I.
Hamachi, Nat. Chem. 2014, 6, 511-518.
Commun. 2013, 49, 7818-7820.
[
[
22] M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11, 19-32.
23] A. D. Martin, J. Britton, T. L. Easun, A. J. Blake, W. Lewis, M. Schrꢁder,
Cryst. Grow. Des. 2015, 15, 1697-1706.
[
8]
S. Wei, W. Lu, X. Le, C. Ma, H. Lin, B. Wu, J. Zhang, P. Theato, T.
Chen, Angew. Chem. Int. Ed. 2019, 58, 16243-16251.
X. Q. Dou, C. L. Feng, Adv. Mat. 2017, 29, 1604062.
[
[
[
24] D. J. Adams, M. F. Butler, W. J. Frith, M. Kirkland, L. Mullen, P.
Sanderson, Soft Matter 2009, 5, 1856-1862.
[
[
9]
10] a) V. Balzani, A. Credi, M. Venturi, Chem. Soc. Rev. 2009, 38, 1542-
25] S. R. Raghavan, B. H. Cipriano in Molecular gels (Eds.: R. G. Weiss, P.
Terech), Springer, Dordrecht, 2006; pp. 241-252.
1550; b) D. Habault, H. Zhang, Y. Zhao, Chem. Soc. Rev. 2013, 42,
7244-7256; c) E. R. Draper, D. J. Adams, Chem. Commun. 2016, 52,
8196-8206; d) X. Li, J. Fei, Y. Xu, D. Li, T. Yuan, G. Li, C. Wang, J. A.
25] A. D. Martin, J. P. Wojciechowski, A. B. Robinson, C. Heu, C. J. Garvey,
J. Ratcliffe, L. J. Waddington, J. Gardiner, P. Thordarson, Sci. Rep.
Li, Angew. Chem. Int. Ed. 2018, 57, 1903-1907; e) Z. L. Pianowski,
Chem.– Eur. J. 2019, 25, 5128-5144.
2017, 7, 43947.
[
26] K. Park, J. Controlled Release 2014, 190, 3-8.
6
This article is protected by copyright. All rights reserved.