812 J. Agric. Food Chem., Vol. 58, No. 2, 2010
Torres et al.
40-position is required for antioxidant activity (45). It is note-
worthy that the ethanolic solution of resveratrol and the 40-OH
derivatives developed a yellow color (typical of resveratrol
oxidation) during the assay, which was not observed with the
monoesters at 3-OH; this observation may be related to the intrin-
sic stability of the different compounds. Regarding the stearoyl
derivatives (Figure 8), the effect of chemical modification of
aromatic rings on the antioxidant activity was more pronounced
than in the acetylation. Again, the substitution at 3-OH gave rise
to a higher decrease of activity than the corresponding activity
at 40-OH.
Conclusions. Immobilized lipase from Alcaligenes sp. (lipase
QLG) is able to catalyze in one step the regioselective synthesis
of resveratrol fatty acid esters in the 3-OH phenyl group. The
resulting derivatives bearing different saturated or unsaturated
acyl-groups are suitable for in vitro and in vivo structure-activity
relationship studies. As the stability of resveratrol in serum is
extremely low because of its fast metabolism in the liver resulting
in the chemical modification of the 3-OH, the novel 3-O-acyl
derivatives may exhibit improved bioavailability and pharmaco-
logical properties.
(10) Gonzalez-Barrio, R.; Beltran, D.; Cantos, E.; Gil, M. I.; Espin, J. C.;
Tomas-Barberan, F. A. Comparison of ozone and UV-C treatments
on the postharvest stilbenoid monomer, dimer, and trimer induction
in var. ‘Superior’ white table grapes. J. Agric. Food Chem. 2006, 54,
4222–4228.
(11) Geronikaki, A. A.; Gavalas, A. M. Antioxidants and inflammatory
disease: Synthetic and natural antioxidants with anti-inflammatory
activity. Comb. Chem. High Throughput Screening 2006, 9, 425–442.
(12) de la Lastra, C. A.; Villegas, I. Resveratrol as an anti-inflammatory
and anti-aging agent: Mechanisms and clinical implications. Mol.
Nutr. Food Res. 2005, 49, 405–430.
(13) Busquets, S.; Ametller, E.; Fuster, G.; Olivan, M.; Raab, V.; Argiles,
J. M.; Lopez-Soriano, F. J. Resveratrol, a natural diphenol, growth
in an experimental reduces metastatic cancer model. Cancer Lett.
2007, 245, 144–148.
(14) Larrosa, M.; Tomas-Barberan, F. A.; Espin, J. C. The grape and
wine polyphenol piceatannol is a potent inducer of apoptosis
in human SK-Mel-28 melanoma cells. Eur. J. Nutr. 2004, 43,
275–284.
(15) Wu, J. M.; Wang, Z. R.; Hsieh, T. C.; Bruder, J. L.; Zou, J. G.;
Huang, Y. Z. Mechanism of cardioprotection by resveratrol, a
phenolic antioxidant present in red wine (review). Int. J. Mol.
Med. 2001, 8, 3–17.
(16) Jung, J. C.; Lim, E.; Lee, Y.; Kang, J. M.; Kim, H.; Jang, S.; Oh, S.;
Jung, M. Synthesis of novel trans-stilbene derivatives and evaluation
of their potent antioxidant and neuroprotective effects. Eur. J. Med.
Chem. 2009, 44, 3166–3174.
(17) King, R. E.; Bomser, J. A.; Min, D. B. Bioactivity of resveratrol.
Compr. Rev. Food Sci. Food Saf. 2006, 5, 65–70.
(18) Shakibaei, M.; Harikumar, K. B.; Aggarwal, B. B. Resveratrol
addiction: To die or not to die. Mol. Nutr. Food Res. 2009, 53,
115–128.
ACKNOWLEDGMENT
We thank Drs. Juan Carlos Espın (CEBAS, CSIC, Murcia,
´
Spain), Juan Carlos Morales (IIQ, CSIC, Sevilla, Spain), and
Isabel Medina (IIM, CSIC, Vigo, Spain) for technical informa-
tion and suggestions. We are grateful to Meito Sangyo Co., Ltd.
(Tokyo, Japan) for samples of lipases QLG and PLG. We thank
Ramiro Martınez (Novozymes A/S, Madrid, Spain) for supply-
´
(19) Fremont, L. Minireview: Biological effects of resveratrol. Life Sci.
2000, 66, 663–673.
ing lipase samples and suggestions.
(20) Cardile, V.; Lombardo, L.; Spatafora, C.; Tringali, C. Chemo-
enzymatic synthesis and cell-growth inhibition activity of resveratrol
analogues. Bioorg. Chem. 2005, 33, 22–33.
Supporting Information Available: Characterization data of
the new compounds. This material is available free of charge via
(21) Chillemi, R.; Sciuto, S.; Spatafora, C.; Tringali, C. Anti-tumor
properties of stilbene-based resveratrol analogues: Recent results.
Nat. Prod. Commun. 2007, 2, 499–513.
LITERATURE CITED
(1) Noguchi, N.; Watanabe, A.; Shi, H. L. Diverse functions of anti-
oxidants. Free Radical Res. 2000, 33, 809–817.
(2) Fang, Y. Z.; Yang, S.; Wu, G. Y. Free radicals, antioxidants, and
nutrition. Nutrition 2002, 18, 872–879.
(22) de Lima, D. P.; Rotta, R.; Beatriz, A.; Marques, M. R.; Montenegro,
R. C.; Vasconcellos, M. C.; Pessoa, C.; de Moraes, M. O.;
Costa-Lotufo, L. V.; Sawaya, A. C. H. F.; Eberlin, M. N. Synthesis
and biological evaluation of cytotoxic properties of stilbene-based
resveratrol analogs. Eur. J. Med. Chem. 2009, 44, 701–707.
(23) Fragopoulou, E.; Nomikos, T.; Karantonis, H. C.; Apostolakis, C.;
Pliakis, E.; Samiotaki, M.; Panayotou, G.; Antonopoulou, S.
Biological activity of acetylated phenolic compounds. J. Agric. Food
Chem. 2007, 55, 80–89.
(24) Kang, S. S.; Cuendet, M.; Endringer, D. C.; Croy, V. L.; Pezzuto,
J. M.; Lipton, M. A. Synthesis and biological evaluation of a library
of resveratrol analogues as inhibitors of COX-1, COX-2 and NF-
kappa B. Bioorg. Med. Chem. 2009, 17, 1044–1054.
(25) Yu, C. W.; Shin, Y. G.; Chow, A.; Li, Y. M.; Kosmeder, J. W.; Lee,
Y. S.; Hirschelman, W. H.; Pezzuto, J. M.; Mehta, R. G.; van
Breemen, R. B. Human, rat, and mouse metabolism of resveratrol.
Pharm. Res. 2002, 19, 1907–1914.
(26) Alcalde, M.; Ferrer, M.; Plou, F. J.; Ballesteros, A. Environmental
biocatalysis: from remediation with enzymes to novel green pro-
cesses. Trends Biotechnol. 2006, 24, 281–287.
(3) Mantovani, G.; Maccio, A.; Madeddu, C.; Mura, L.; Gramignano,
G.; Lusso, M. R.; Murgia, V.; Camboni, P.; Ferreli, L.; Mocci, M.;
Massa, E. The impact of different antioxidant agents alone or in
combination on reactive oxygen species, antioxidant enzymes and
cytokines in a series of advanced cancer patients at different sites:
Correlation with disease progression. Free Radical Res. 2003, 37,
213–223.
(4) Espin, J. C.; Garcia-Conesa, M. T.; Tomas-Barberan, F. A. Nutra-
ceuticals: Facts and fiction. Phytochemistry 2007, 68, 2986–3008.
(5) Lo Nostro, P.; Capuzzi, G.; Romani, A.; Mulinacci, N. Self-
assembly and antioxidant properties of octanoyl-6-O-ascorbic acid.
Langmuir 2000, 16, 1744–1750.
(6) Kerem, Z.; Chetrit, D.; Shoseyov, O.; Regev-Shoshani, G. Protec-
tion of lipids from oxidation by epicatechin, trans-resveratrol, and
gallic and caffeic acids in intestinal model systems. J. Agric. Food
Chem. 2006, 54, 10288–10293.
(7) Kapich, A. N.; Galkin, S.; Hatakka, A. Effect of phenolic acids on
manganese peroxidase-dependent peroxidation of linoleic acid and
degradation of a non-phenolic lignin model compound. Biocatal.
Biotransform. 2007, 25, 350–358.
(8) Torres, P.; Kunamneni, A.; Ballesteros, A.; Plou, F. J. Enzymatic
modification for ascorbic acid and alpha-tocopherol to enhance their
stability in food and nutritional applications. Open Food Sci. J. 2008,
2, 1–9.
(27) Nicotra, S.; Cramarossa, M. R.; Mucci, A.; Pagnoni, U. M.; Riva, S.;
Forti, L. Biotransformation of resveratrol: Synthesis of trans-dehy-
drodimers catalyzed by laccases from Myceliophtora thermophyla
and from Trametes pubescens. Tetrahedron 2004, 60, 595–600.
(28) Shim, H.; Hong, W.; Ahn, Y. Enzymatic preparation of phenolic
glucosides by Streptococcus mutans. Bull. Korean Chem. Soc. 2003,
24, 1680–1682.
(29) Teng, R. W.; Bui, T. K. A.; McManus, D.; Armstrong, D.; Mau,
S. L.; Bacic, A. Regioselective acylation of several polyhydroxylated
natural compounds by Candida antarctica lipase B. Biocatal. Bio-
transform. 2005, 23, 109–116.
(9) Sabally, K.; Karboune, S.; St Louis, R.; Kermasha, S. Lipase-
catalyzed synthesis of phenolic lipids from fish liver oil and dihy-
drocaffeic acid. Biocatal. Biotransform. 2007, 25, 211–218.