10.1002/anie.201703863
Angewandte Chemie International Edition
Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013,
342, 344; c) G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D.
Sabba, M. Grätzel, S. Mhaisalkar, T. C. Sum, Nat. Mater. 2014, 13, 476;
d)F. Zhang, H. Zhong, C. Chen, X.-g. Wu, X. Hu, H. Huang, J. Han, B.
Zou, Y. Dong, ACS Nano 2015, 9, 4533; e)N. J. Jeon, J. H. Noh, W. S.
Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476; f)J.
H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, Nano Lett. 2013,
13, 1764; g)B. V. Lotsch, Angew. Chem. Int. Ed. 2014, 53, 635; h)H. Zhu,
Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh,
S. Jin, X. Y. Zhu, Nat. Mater. 2015, 14, 636; i)J. Song, J. Li, X. Li, L. Xu,
Y. Dong, H. Zeng, Adv. Mater. 2015, 27, 7162; j)M. I. Saidaminov, J.
Almutlaq, S. Sarmah, I. Dursun, A. A. Zhumekenov, R. Begum, J. Pan, N.
Cho, O. F. Mohammed, O. M. Bakr, ACS Energy Lett. 2016, 1, 840; k)W.
Peng, X. Miao, V. Adinolfi, E. Alarousu, O. El Tall, A.-H. Emwas, C. Zhao,
G. Walters, J. Liu, O. Ouellette, J. Pan, B. Murali, E. H. Sargent, O. F.
Mohammed, O. M. Bakr, Angew. Chem. Int. Ed. 2016, 55, 10686; l)X.
Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang, W. C. H. Choy, A. L.
Rogach, Nano Lett. 2016, 16, 1415; m)Y. Zhang, M. I. Saidaminov, I.
Dursun, H. Yang, B. Murali, E. Alarousu, E. Yengel, B. A. Alshankiti, O.
M. Bakr, O. F. Mohammed, J. Phys. Chem. Lett. 2017, 8, 961; n)D. Shi,
V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S.
Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A.
Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, Science 2015,
347, 519; o)Q. Zhou, Z. Bai, W.-g. Lu, Y. Wang, B. Zou, H. Zhong, Adv.
Mater. 2016, 28, 9163; p)G. Nedelcu, L. Protesescu, S. Yakunin, M. I.
Bodnarchuk, M. J. Grotevent, M. V. Kovalenko, Nano Lett. 2015, 15,
5635; q)Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A.
Petrozza, M. Prato, L. Manna, J. Am. Chem. Soc. 2015, 137, 10276; r)L.
Liu, S. Huang, L. Pan, L.-J. Shi, B. Zou, L. Deng, H. Zhong, Angew.
Chem. Int. Ed. 2017, 56, 1780.
Figure 4a (also Figure S9) and Figure S10 respectively.
Platelets were observed stacked or self-assembled in the
images and these were also in cubic phase. The UV-visible and
PL spectra of these nanostructures are shown in Figure 4b
which shows intense Mn d-d emission, and the dual emission
ratio remained almost same like our best doped nanocubes with
5% Mn and 0.5 ml RNH3Cl.
The quantum yield (QY) of our best sample was 27 %
standardized following the procedure mentioned in our previous
report.[6b] We focused here the relative intensity ratios of the dual
emissions as the function of concentration of the additive salt
and hence different literature reported QYs were not compared.
In conclusion, a chemically controlled doping protocol is
reported for obtaining highly efficient Mn doped CsPbCl3
nanocrystals. Using RNH3Cl as the active chlorinating agent for
activating the reactivity of MnCl2 along with PbCl2 at elevated
temperature, the doped nanocrystals were synthesized where
the Mn d-d emission intensity wastuned as a function of amount
of RNH3Cl. As a consequence, only 5 to 10% Mn(II) precursor
became enough in obtaining the highquality doped nanocrystals
Analysis suggested that RNH3Cl helped in controlling the size by
increasing the number of particles which provided opportunity for
more Mn to react and got doped. Further, varying Cs to Pb
precursor concentration, doped 2D platelets were synthesized
which also retained the Mn emission. These suggest that
beyond the dopant-host precursors concentrations, manipulation
of the doping activating reagent can controllably tailor the dopant
emission intensities in perovskite host nanocrystals.
[3] a) W. Liu, Q. Lin, H. Li, K. Wu, I. Robel, J. M. Pietryga, V. I. Klimov, J.
Am. Chem. Soc. 2016, 138, 14954; b) D. Parobek, B. J. Roman, Y.
Dong, H. Jin, E. Lee, M. Sheldon, D. H. Son, Nano Lett. 2016, 16, 7376;
c)W. J. Mir, M. Jagadeeswararao, S. Das, A. Nag, ACS Energy Lett.
2017, 2, 537; d)H. Liu, Z. Wu, J. Shao, D. Yao, H. Gao, Y. Liu, W. Yu, H.
Zhang, B. Yang, ACS Nano 2017, 11, 2239; d) A. Swarnkar, V. K. Ravi,
A. Nag, ACS Energy Lett. 2017, 2, 1089.
Acknowledgements
DST of India (SJF/CSA-01/2010-11, SR/NM/NS-1383/2014) is
acknowledged for funding. SDA, SKD, AD, AKG acknowledge
CSIR, India for fellowship.
[4] a) D. J. Norris, N. Yao, F. T. Charnock, T. A. Kennedy, Nano Lett. 2001,
1, 3; b)D. J. Norris, A. L. Efros, S. C. Erwin, Science 2008, 319, 1776;
c)N. Pradhan, D. D. Sarma, J. Phys. Chem. Lett. 2011, 2, 2818; d)S.
Acharya, D. D. Sarma, N. R. Jana, N. Pradhan, J. Phys. Chem. Lett.
2010, 1, 485; e)S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A.
Kennedy, D. J. Norris, Nature 2005, 436, 91; f) W. Stam, J. J. Geuchies,
T. Altantzis, K. H. W. van den Bos, J. D. Meeldijk, S. Van Aert, S. Bals,
D. Vanmaekelbergh, C. M. Donega, J. Am. Chem. Soc., 2017, 139, 4087.
[5] a) Y. Amit, Y. Li, A. I. Frenkel, U. Banin, ACS Nano 2015, 9, 10790; b)R.
Xie, X. Peng, J. Am. Chem. Soc. 2009, 131, 10645; c) S. Acharya, S.
Sarkar, N. Pradhan, J. Phys. Chem. C 2013, 117, 6006; d)N. S. Karan, S.
Sarkar, D. D. Sarma, P. Kundu, N. Ravishankar, N. Pradhan, J. Am.
Chem. Soc. 2011, 133, 1666; e)V. A. Vlaskin, C. J. Barrows, C. S.
Erickson, D. R. Gamelin, J. Am. Chem. Soc. 2013, 135, 14380; f)S. K.
Panda, S. G. Hickey, H. V. Demir, A. Eychmüller, Angew. Chem. Int. Ed.
2011, 50, 4432; g)H. D. Nelson, L. R. Bradshaw, C. J. Barrows, V. A.
Vlaskin, D. R. Gamelin, ACS Nano 2015, 9, 11177.
Keywords: CsPbCl3 • d-d emission • doped perovskites •
Mn:CsPbCl3 • platelets
[1] a) J. S. Manser, J. A. Christians, P. V. Kamat, Chem. Rev. 2016, 116,
12956; b) X. Xu, Y. Chen, W. Zhou, Z. Zhu, C. Su, M. Liu, Z. Shao, Adv.
Mater. 2016, 28, 6442; c)M. Li, M. Zhao, F. Li, W. Zhou, V. K. Peterson,
X. Xu, Z. Shao, I. Gentle, Z. Zhu, Nat. Commun. 2017, 8, 13990; d)J.
Navas, A. Sanchez-Coronilla, J. J. Gallardo, N. Cruz Hernandez, J. C.
Pinero, R. Alcantara, C. Fernandez-Lorenzo, D. M. De los Santos, T.
Aguilar, J. Martin-Calleja, Nanoscale 2015, 7, 6216; e)M. T. Klug, A.
Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, J. T. W.
Wang, X. Dang, V. Bulovic, H. J. Snaith, A. M. Belcher, Energy Environ.
Sci. 2017, 10, 236; f)A. L. Abdelhady, M. I. Saidaminov, B. Murali, V.
Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L.
Sinatra, E. H. Sargent, O. F. Mohammed, O. M. Bakr, The J. Phys.
Chem. Lett. 2016, 7, 295; g)D. Pérez-del-Rey, D. Forgács, E. M. Hutter,
T. J. Savenije, D. Nordlund, P. Schulz, J. J. Berry, M. Sessolo, H. J.
Bolink, Adv. Mater. 2016, 28, 9839; h)A. K. Guria, S. K. Dutta, S. D.
Adhikari, N. Pradhan, ACS Energy Lett. 2017,2, 1014; i)R. Begum, M. R.
Parida, A. L. Abdelhady, B. Murali, N. M. Alyami, G. H. Ahmed, M. N.
Hedhili, O. M. Bakr, O. F. Mohammed, J. Am. Chem. Soc. 2017, 139,
731.
[6] a) F. V. Mikulec, M. Kuno, M. Bennati, D. A. Hall, R. G. Griffin, M. G.
Bawendi, J. Am. Chem. Soc. 2000, 122, 2532; b)N. Pradhan, D.
Goorskey, J. Thessing, X. Peng, J. Am. Chem. Soc. 2005, 127, 17586;
c)C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R.
Gamelin, D. L. Patrick, ACS Nano 2014, 8, 3461; d)V. A. Vlaskin, N.
Janssen, J. van Rijssel, R. Beaulac, D. R. Gamelin, Nano Lett. 2010, 10,
3670; e)R. Beaulac, P. I. Archer, S. T. Ochsenbein, D. R. Gamelin, Adv.
Funct. Mater. 2008, 18, 3873; f)O. Chen, D. E. Shelby, Y. Yang, J.
Zhuang, T. Wang, C. Niu, N. Omenetto, Y. C. Cao, Angew. Chem. Int.
Ed. 2010, 49, 10132.
[2] a) W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta,
J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, A. D.
Mohite, Science 2015, 347, 522; b) G. Xing, N. Mathews, S. Sun, S. S.
This article is protected by copyright. All rights reserved.