10.1002/ejoc.201800990
European Journal of Organic Chemistry
109.6, 36.3, 25.4, 14.3; IR (ATR): ṽ=3183 cm−1 (N-H); HRMS (DCI/CH4):
calcd for C10H13N2S [MH]+:193.0799, found: 193.0799. The data match
those reported in the literature.[17]
2nd edn, 2008; b) J.-P. Sauvage, Angew. Chem. 2017, 129, 11228-
11242; Angew. Chem. Int. Ed. 2017, 56, 11080-11093; c) C. J. Bruns, J.
F. Stoddart, The Nature of the Mechanical Bond: From Molecules to
Machines, John Wiley and Sons, Hoboken, 2016.
[2]
[3]
a) S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer,
Chem. Rev. 2015, 115, 10081-10206; b) C. Pezzato, C. Cheng, J. F.
Stoddart and R. D. Astumian, Chem. Soc. Rev. 2017, 46, 5491-5507.
a) J. C. Chambron, C. Dietrich-Buchecker, G. Rapenne, J.-P. Sauvage,
Chirality 1998, 10, 125-133; b) G. S. Kottas, L. I. Clarke, D. Horinek, J.
Michl, Chem. Rev. 2005, 105, 1281-1376; c) E. R. Kay, D. A. Leigh, F.
Zerbetto, Angew. Chem. 2007, 119, 72-196; Angew. Chem. Int. Ed.
2007, 46, 72-191; d) S. Kassem, T. van Leeuwen, A. S. Lubbe, M. R.
Wilson, B. L. Feringa, D. A Leigh, Chem. Soc. Rev. 2017, 46, 2592-
2621 and references therein.
Compound 12:
Conditions A (classical heating): In a dry Schlenk tube under argon,
penta-arylbromide 2 (26 mg, 17 µmol, 1.0 equiv.), palladium(II) acetate
(3.9 mg, 17 µmol, 1.0 equiv.), K3PO4 (72 mg, 340 µmol, 20 equiv.),
ferroceneboronic acid (156 mg, 680 µmol, 40 equiv.) and 2-
dicyclohexylphosphino-2'-6'-dimethoxybiphenyl (SPhos) (14 mg, 34 µmol,
2.0 equiv.) were successively introduced and degassed anhydrous
toluene (1.5 mL) was added. The resulting suspension was stirred at
100 °C for 48 hours and the completion of the reaction was monitored by
TLC. The reaction mixture was allowed to cool to room temperature,
filtered on a neutral alumina pad (using CH2Cl2) and evaporated in vacuo.
The residue was purified by column chromatography (neutral alumina,
CH2Cl2/cyclohexane 30:70) followed (if required) by a recrystallization in
a heptane/MeOH mixture (1:1). Complex 12 was obtained as an orange-
red solid (6 mg, 2.9 µmol, 17%).
[4]
[5]
T. R. Kelly, H. De Silva, R. A. Silva, Nature 1999, 401, 150-152.
N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, B. L.
Feringa, Nature 1999, 401, 152-155.
[6]
a) R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C.
W. M. Bastiaansen, D. J. Broer, B. L. Feringa, Nature 2006, 440, 163;
b) K.-Y. Chen, O. Ivashenko, G. T. Carroll, J. Robertus, J. C. M.
Kistemaker, G. London, W. R. Browne, P. Rudolf, B. L. Feringa, J. Am.
Chem. Soc. 2014, 136, 3219-3224; c) Q. Li, G. Fuks, E. Moulin, M.
Maaloum, M. Rawiso, I. Kulic, J. T. Foy, N. Giuseppone, Nat.
Nanotechnol. 2015, 10, 161-165; d) A. Saywell, A. Bakker, J. Mielke, T.
Kumagai, M. Wolf, V. Garcia-Lopez, P.-T. Chiang, J. M. Tour, L. Grill,
ACS Nano 2016, 10, 10945-10952.
Conditions
microwave irradiation and under argon, penta-arylbromide 2 (50 mg, 33
µmol, 1.0 equiv.), 1,1'-bis(diphenylphosphino)ferrocene-
B (microwave irradiation): In a dry tube designed for
palladium(II)dichloride dichloromethane PdCl2(dppf) CH2Cl2 (27 mg, 33
µmol, 1.0 equiv.), sodium tert-butoxide (71 mg, 740 µmol, 22.5 equiv.),
ferroceneboronic acid (57 mg, 246 µmol, 7.5 equiv.) were successively
introduced and degassed anhydrous toluene (3.6 mL) was added. The
tube was sealed and the reaction mixture was heated under microwave
irradiation at 135 °C for 1h (a pressure of 5 bar was achieved). The
reaction mixture was allowed to cool to room temperature, filtered on a
neutral alumina pad (using CH2Cl2) and evaporated in vacuo. The
residue was purified by column chromatography (neutral alumina,
CH2Cl2/cyclohexane 30:70) followed (if required) by a recrystallization in
a heptane/MeOH mixture (1:1). Complex 12 was obtained as an orange-
red solid (30 mg, 15 µmol, 45%). Rf=0.2 (CH2Cl2/cyclohexane 30:70,
SiO2); 1H NMR (500 MHz, CD2Cl2, 25°C): δ=8.11 (br s, ~3H, Ha), 7.92 (bs,
3H, Hd), 7.36 (m, 13H, Hb and Hh), 7.20 (d, 3J = 8.5 Hz, 10H, Hi), 6.99 (dd,
3J = 8.4 Hz, 4J = 1.3 Hz, 3H, Hc), 4.55 (dd, 3J = 1.9 Hz, 4J = 1.8 Hz, 10H,
Hj), 4.24 (dd, 3J = 1.9 Hz, 4J = 1.8 Hz, 10H, Hk), 3.94 (s, 25H, Hl), 3.90 (s,
6H, He), 2.48 (q, 3J = 7.3 Hz, 6H, Hf), 1.28 (t, 3J = 7.3 Hz, 9H, Hg);
13C NMR (125 MHz, CD2Cl2, 25°C): δ=144.1 (C2), 140.4 (C1), 138.6 (C15),
137.6 (C5), 133.9 (C13), 132.4 (C12), 125.1 (C14), 122.6 (C7), 122.4 (C4),
120.4 (C3), 111.4 (C6), 87.8 (C11), 84.7 (C16), 70.2 (C19), 69.6 (C17), 66.7
(C18), 36.9 (C8), 25.7 (C9), 14.8 (C10); UV/Vis (CH2Cl2): λmax (ε)= 292
(30300), 340 nm (16000 mol−1dm3cm−1); HRMS (ESI+): calcd for
C115H99BFe5N6RuS3 [MH]+:2053.3108, found: 2053.3103.
[7]
[8]
[9]
H. L. Tierney, C. J. Murphy, A. D. Jewell, A. E. Baber, E. V. Iski, H. Y.
Khodaverdian, A. F. McGuire, N. Klebanov, E. C. H. Sykes, Nat.
Nanotechnol. 2011, 6, 625-629.
T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Macia, N. Katsonis,
S. R. Harutyunyan, K.-H. Ernst, B. L. Feringa, Nature 2011, 479, 208-
211.
U. G. E. Perera, F. Ample, H. Kersell, Y. Zhang, G. Vives, J. Echeverria,
M. Grisolia, G. Rapenne, C. Joachim, S.-W. Hla, Nature Nanotechnol.
2013, 8, 46-51.
[10] Y. Zhang, H. Kersell, R. Stefak, J. Echeverria, V. Iancu, U. G. E. Perera,
Y. Li, A. Deshpande, K.-F. Braun, C. Joachim,G. Rapenne, S.-W. Hla,
Nature Nanotech. 2016, 11, 706-712.
[11] G. Vives, G. Rapenne, Tetrahedron 2008, 64, 11462-11468.
[12] a) C. Joachim, G. Rapenne, Top. Curr. Chem. 2014, 354, 253-277; b)
R. Stefak, A. M. Sirven, S. Fukumoto, H. Nakagawa, G. Rapenne,
Coord. Chem. Rev. 2015, 287, 79-88; c) C. Kammerer, G. Rapenne,
Eur. J. Inorg. Chem. 2016, 2214-2226.
[13] a) G. Vives, G. Rapenne, Tetrahedron Lett. 2006, 47, 8741-8744; b) G.
Vives, A. Carella, S. Sistach, J.-P. Launay, G. Rapenne, New. J. Chem.
2006, 30, 1429-1438; c) G. Vives, A. Gonzalez, J. Jaud, J.-P. Launay,
G. Rapenne, Chem. Eur. J. 2007, 13, 5622-5631.
[14] A. Carella, R. Poteau, G. Rapenne, J.-P. Launay, Chem. Eur. J. 2008,
14, 8147-8156.
[15] N. G. Connelly, I. Manners, J. Chem. Soc., Dalton Trans., 1989, 30,
283-288.
Acknowledgements
[16] Unpublished results.
[17] A. Carella, G. Vives, T. Cox, J. Jaud, G. Rapenne, J.-P. Launay, Eur. J.
Inorg. Chem. 2006, 980-987.
This work was supported by the University Paul Sabatier
(Toulouse, France) and the Centre National de la Recherche
Scientifique (CNRS). It has received funding from the Agence
Nationale de la Recherche (ANR) (ACTION project ANR-15-
CE29-0005) and from the European Union’s Horizon 2020
research and innovation programme under the project MEMO,
grant agreement No 766864.
[18] T. Miyazaki, S. Kasai, Y. Ogiwara, N. Sakai, Eur. J. Org. Chem. 2016,
1043-1049.
[19] For a recent review on the use of TMDS in organic synthesis, see: J.
Pesti, G. L.Larson, Org. Process Res. Dev. 2016, 20, 1164-1181.
[20] N. Sakai, K. Fujii, T. Konakahara, Tetrahedron Lett. 2008, 49, 6873-
6875.
[21] S. Trofimenko, Chem. Rev. 1993, 93, 943-980.
[22] C. Santini, M. Pellei, G. Gioia Lobbia, G. Papini, Mini-Rev. Org. Chem.
2010, 7, 84-124.
Keywords: scorpionate ligand • indazole • reductive sulfidation •
[23] M. Kitamura, Y. Takenaka, T. Okuno, R. Holl, B. Wünsch, Eur. J. Inorg.
Chem. 2008, 1188-1192.
indium • molecular motor
[24] K. Tsuda, K. Miyata, T. Okuno, M. Yoshimura, S. Tanaka, M. Kitamura,
Tetrahedron Lett. 2008, 2990-2993.
[1]
a) V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines:
Concepts and Perspectives for the Nanoworld, Wiley-VCH, Weinheim,
This article is protected by copyright. All rights reserved.