K. Kaur et al. / Inorganica Chimica Acta 399 (2013) 1–5
5
imine linkages of receptor 1 are coordinating with Zn2+ (Fig. S1).
Appendix A. Supplementary material
The effect of anions on the fluorescence profile of 1ꢀZn2+ was exam-
ined in HEPES buffered DMF/H2O (7:3, v/v) solvent system. The
Supplementary data associated with this article can be found, in
fluorescence profile of 1ꢀZn2+ complex showed no considerable
ꢁ
change in the presence of any of Fꢁ, Clꢁ, Brꢁ, Iꢁ, CNꢁ, ClO4
,
References
NO3ꢁ, CH3COOꢁ and HSO4ꢁ. However, addition of phosphate to
the 1ꢀZn2+ complex leads to quench the band at 462 nm. Out of
the tested anions, maximum quenching was observed in case of
phosphate (Fig. 3A). The selective binding of phosphate ion to
1ꢀZn2+ complex can be explained due to the total anionic charge
density of all the O–P oxygen atoms that participate in the complex
formation between phosphate ion and zinc ion. In contrast to this,
all other anions have lesser charge density in comparison to phos-
phate ion. Hence a significant quenching is observed upon addition
of phosphate to the 1ꢀZn2+ complex [17]. The time-dependence of
fluorescence intensity [18] of 1ꢀZn2+ complex was measured and
the outcome of the result was compared with other anions
(Fig. S10). The 1ꢀZn2+ complex attained equilibrium immediately
upon after mixing with phosphate.
[1] (a) A.T. Wright, E.V. Anslyn, Chem. Soc. Rev. 35 (2006) 14;
(b) V. Amendola, L. Fabbrizzi, Chem. Commun. (2009) 513;
(c) L. Prodi, New J. Chem. 29 (2005) 20;
(d) A. McCluskey, C.I. Holdsworth, M.C. Bowyer, Org. Biomol. Chem. 5 (2007)
3233;
(e) H. Li, F. Qu, J. Mater. Chem. 17 (2007) 3536;
(f) Y. Zhouab, J. Yoon, Chem. Soc. Rev. 41 (2012) 52;
(g) Z. Guo, W. Zhu, H. Tian, Chem. Commun. 48 (2012) 6073.
[2] (a) M. Pan, X.-M. Lin, G.-B. Li, C.-Y. Su, Coord. Chem. Rev. 255 (2011) 1921;
(b) A.M. Powe, K.A. Fletcher, N.N. St. Luce, M. Lowry, S. Neal, M.E. McCarroll,
P.B. Oldham, L.B. McGown, I.M. Warner, Anal. Chem. 76 (2004) 4614;
(c) L. Gao, Y. Wang, J. Wang, L. Huang, L. Shi, X. Fan, Z. Zou, T. Yu, M. Zhu, Z. Li,
Inorg. Chem. 45 (2006) 6844.
[3] (a) H. Kobayashi, M. Ogawa, R. Alford, P.L. Choyke, Y. Urano, Chem. Rev. 110
(2010) 2620;
(b) R.W. Sinkeldam, N.J. Greco, Y. Tor, Chem. Rev. 110 (2010) 2579.
[4] (a) T. Gunnlaugsson, H.D.P. Ali, M. Glynn, P.E. Kruger, G.M. Hussey, F.M. Pfeffer,
C.M.D. Santo, J. Tierney, J. Fluoresc. 15 (2005) 287;
(b) A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy,
J.T. Rademacher, T.E. Rice, Chem. Rev. 97 (1997) 1515;
(c) J.F. Callan, A.P. de Silva, D.C. Magri, Tetrahedron 61 (2005) 8551;
(d) R. Martinez-Manez, F. Sancenon, Chem. Rev. 103 (2003) 4419;
(e) Z.C. Xu, J. Yoon, D.R. Spring, Chem. Soc. Rev. 39 (2010) 1996.
[5] (a) K.E. Sapsford, L. Berti, I.L. Medintz, Angew. Chem., Int. Ed. 45 (2006) 4562;
(b) H.J. Carlson, R.E. Campbell, Curr. Opin. Biotechnol. 20 (2009) 19;
(c) C. Lodeiro, F. Pina, Coord. Chem. Rev. 253 (2009) 1353;
(d) Y.N. Hong, J.W.Y. Lam, B.Z. Tang, Chem. Commun. (2009) 4332;
(e) M. Wang, G.X. Zhang, D.Q. Zhang, D.B. Zhu, B.Z. Tang, J. Mater. Chem. 20
(2010) 1858;
(f) J.S. Wu, W.M. Liu, X.Q. Zhuang, F. Wang, P.F. Wang, S.L. Tao, X.H. Zhang, S.K.
Wu, S.T. Lee, Org. Lett. 9 (2007) 33.
[6] (a) J.D. Luo, Z.L. Xie, J.W.Y. Lam, L. Cheng, H.Y. Chen, C.F. Qiu, H.S. Kwok, X.W.
Zhan, Y.Q. Liu, D.B. Zhu, B.Z. Tang, Chem. Commun. (2001) 1740;
(b) C.-C. Hsieh, Y.-M. Cheng, C.-J. Hsu, K.-Y. Chen, P.-T. Chou, J. Phys. Chem. A
112 (2008) 8323;
3.6. Competitive anion binding of zinc complex of receptor
The competitive anion binding test was carried out with 1ꢀZn2+
complex in the presence of 2 equiv. of one anion out of Fꢁ, Clꢁ, Bꢁrꢁ3,
Iꢁ, NO3ꢁ, CNꢁ, AcOꢁ, ClO4ꢁ and HSO4ꢁ alongꢁw3 ith 2equiv of PO4
.
The fluorescence profile of 1ꢀZn2+ with PO4 complex was unaf-
fected by the presence of different anions (Fig. S11). The detection
limit of 1ꢀZn2+ complex as a fluorescent sensor for the analysis of
PO4ꢁ3 was concluded from a plot of fluorescence intensity as a func-
tion of the concentration of the added different amounts of anion. It
was found that 1ꢀZn2+ has a detection limit of 17
l
M for PO4ꢁ3. Thus
1ꢀZn2+ can be used for the recognition and selective estimation of
phosphate at industrial level. The binding of phosphate with 1ꢀZn2+
contemplates us to study the recognition properties towards phos-
(c) P.F. Wang, S.K. Wu, J. Photochem. Photobiol. A 86 (1995) 109.;
(d) Z.M. Li, S.K. Wu, J. Fluoresc. 7 (1997) 237;
(e) G.Q. Yang, F. Morlet-Savary, Z.K. Peng, S.K. Wu, J.P. Fouassier, Chem. Phys.
Lett. 256 (1996) 536.
phorylated biomolecules. Addition of 50
molecules such as ATP, ADP, AMP, NADP and NAD to 10
complex in HEPES buffered DMF/H2O (7:3, v/v) solvent system leads
lM of phosphorylated bio-
l
M of 1ꢀZn2+
[7] H. Wang, L. Xue, H. Jiang, Org. Lett. 13 (2011) 3844;
(b) Z. Xu, J. Pan, D.R. Spring, J. Cui, J. Yoon, Tetrahedron 66 (2010) 1678;
(c) P. Saluja, N. Kaur, N. Singh, D.O. Jang, Tetrahedron Lett. 53 (2012) 3292.
[8] (a) M. Bhuyan, E. Katayev, S. Stadlbauer, H. Nonaka, A. Ojida, I. Hamachi, B.
König, Eur. J. Org. Chem. (2011) 2807;
to quench the fluorescence emission band at 462 nm (Fig. 3C).
(b) H.H. Jang, S. Yi, M.H. Kim, S. Kim, N.H. Lee, M.S. Han, Tetrahedron Lett. 50
(2009) 6241;
(c) K. Sato, Y. Sadamitsu, S. Arai, T. Yamagishi, Tetrahedron Lett. 48 (2007) 493;
(d) P.D. Beer, E.J. Hayes, Coord. Chem. Rev. 240 (2003) 167;
(e) R. Joseph, J.P. Chinta, C.P. Rao, Inorg. Chim. Acta 363 (2010) 2833.
[9] (a) A.P. de Silva, T.P. Vance, M.E.S. West, G.D. Wright, Org. Biomol. Chem. 6
(2008) 2468;
4. Conclusion
In conclusion, we have synthesized an ‘‘on–off’’ multi-respon-
sive and selective sensor 1 as a probe to monitor the Zn2+ concen-
tration through changes in fluorescence intensity based on ESIPT
and charge transfer (CT) mechanism. The receptor showed high
sensitivity and selectivity for Zn2+ detection at concentrations
(b) A.P. de Silva, S. Uchiyama, Nat. Nanotechnol. 2 (2007) 399;
(c) F.M. Raymo, S. Giordani, J. Am. Chem. Soc. 124 (2002) 2004;
(d) F.M. Raymo, R.J. Alvarado, S. Giordani, M.A. Cejas, J. Am. Chem. Soc. 125
(2003) 2361;
(e) H. Tian, B. Quin, R.X. Yao, X.L. Zhao, S.J. Yang, Adv. Mater. 15 (2003) 2104;
(f) H.M. Wang, D.Q. Zhang, X.F. Guo, L.Y. Zhu, Z.G. Shuai, D.B. Zhu, Chem.
Commun. (2004) 670;
ranging from 0 to 100 lM with detection limit of 10 lM. The
changes in the fluorescence signature of the 1ꢀZn2+ complex in
the presence of phosphate anion are significantly promising.
Therefore, the Zn2+ complex of the receptor can be used for phos-
phate quantification and for the recognition of phosphorylated bio-
molecules through cation displacement approach. The cation
displacement approach employing a metal-complex for anion rec-
ognition allows to propose new receptors for sensitive anion detec-
tion in aqueous solutions.
(g) M. Suresh, P. Kar, A. Das, Inorg. Chim. Acta 363 (2010) 2881.
[10] (a) S. Uchiyama, G.D. Mc Clean, K. Iwai, A.P. de Silva, J. Am. Chem. Soc. 127
(2005) 8920;
(b) Y. Liu, W. Jiang, H.Y. Zhang, C.J. Li, J. Phys. Chem. B 110 (2006) 14231;
(c) D.D. Magri, T.P. Vance, A.P. de Silva, Inorg. Chim. Acta 360 (2007) 751;
(d) Manoj Kumar, Rajesh Kumar, Vandana Bhalla, Org. Biomol. Chem. 9 (2011)
8237;
(e) N. Kaur, N. Singh, B. McCaughan, J.F. Callan, Sens. Actuators B 144 (2010) 88.
[11] W. Rodriguez-Cordoba, E.Z. Collado-Fregoso, J. Peon, J. Phys. Chem. A 111
(2007) 6241.
[12] (a) A.D. Becke, J. Chem. Phys. 98 (1993) 5648;
(b) C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[13] L.W. Jenneskens, H.J. Verhey, H.J. van Ramesdonk, A.J. Witteveen, J.W.
Verhoeven, Macromolecules 24 (1991) 4038.
Acknowledgment
[14] M. Shortreed, R. Kopelman, M. Kuhn, B. Hoyland, Anal. Chem. 68 (1996) 1414.
[15] H. Benesi, H. Hildebrand, J. Am. Chem. Soc. 71 (1949) 2703.
[16] P. Job, Ann. Chim. 9 (1928) 113.
[17] D.H. Lee, S.Y. Kim, J.-I. Hong, Angew. Chem., Int. Ed. 43 (2004) 4777.
[18] S. Ithurria, M.D. Tessier, B. Mahler, R.P.S.M. Lobo, B. Dubertret, Al.L. Efros, Nat.
Mater. 10 (2011) 936.
Authors are thankful to CSIR (Project No. 01(2417)/10/EMR-II)
for research funding. V.K.B. is thankful to the DST for the DST-IN-
SPIRE Faculty fellowship and research grant. We are also thankful
to SAIF Chandigarh for NMR and Mass Spectra.