Inorganic Chemistry
Communication
These results indicate that coordination of the neutral O
donors can influence the energy levels of the highest occupied
and lowest unoccupied molecular orbitals of the complexes, thus
shifting the absorption to the visible region (Figure S10 in the
SI). Although TDDFT calculations cannot explain the effect of
the absorption shift to the red region with a significant increase in
the molar absorption coefficient, the results provide the
groundwork for designing optically useful rhenium-based
supramolecules.
V.; Lee, M. H.; Stang, P. S.; Chi, K. W. Acc. Chem. Res. 2013,
DOI: 10.1021/ar400010v.
(2) (a) Dinolfo, P. H.; Hupp, J. T. Chem. Mater. 2001, 13, 3113.
(
(
b) Kumar, A.; Sun, S. S.; Lees, A. J. Coord. Chem. Rev. 2008, 252, 922.
c) Thanasekaran, P.; Lee, C. C.; Lu, K. L. Acc. Chem. Res. 2012, 45,
1
403. (d) Thorp-Greenwood, F. L.; Balasingham, R. G.; Coogan, M. P. J.
Organomet. Chem. 2012, 714, 12. (e) Rajakannu, P.; Elumalai, P.;
Shankar, B.; Hussain, F.; Sathiyendiran, M. Dalton Trans. 2013, 42,
1
1359 and ref 5 cited therein.
(3) (a) Jeon, S. O.; Lee, J. Y. J. Mater. Chem. 2012, 22, 4233. (b) Han,
In conclusion, a new class of SCCs, containing neutral hard O-
donor-bridged ligands, was constructed by spontaneously
transforming the soft phosphine P donor to a hard phosphine
oxide O donor in the presence of an anionic chelating O donor
and Re (CO) using a one-step multicomponent assembly.
These results indicate that a change to the neutral O donor from
a neutral N-donor building unit enhances the absorbance of
SCCs significantly. These synthetic methodologies can be
extended to synthesize stable and soluble supramolecular
assemblies with various sizes/shapes and interesting photo-
physical properties by using partially protected metal ions.
C.; Zhang, Z.; Xu, H.; Yue, S.; Li, J.; Yan, P.; Deng, Z.; Zhao, Y.; Yan, P.;
Liu, S. J. Am. Chem. Soc. 2012, 134, 19179.
(
4) (a) Rosario-Amorin, D.; Duesler, E. N.; Paine, R. T.; Hay, B. P.;
Delmau, L. H.; Reilly, S. D.; Gaunt, A. J.; Scott, B. L. Inorg. Chem. 2012,
1, 6667. (b) Redmond, M. P.; Cornet, S. M.; Woodall, S. D.; Whittaker,
D.; Collison, D.; Helliwell, M.; Natrajan, L. S. Dalton Trans. 2011, 40,
914. (c) Guseva, E. V.; Naumova, A. A.; Karimova, D. T.; Sokolova, A.
V.; Gavrilova, E. L.; Busygina, T. E. Russ. J. Gen. Chem. 2012, 82, 1.
d) Cheng, F.; Codgbrook, H. L.; Hector, A. L.; Levason, W.; Reid, G.;
5
2
10
3
(
Webster, M.; Zhang, W. Polyhedron 2007, 26, 4147. (e) Lees, A. M. J.;
Platt, A. W. G. Inorg. Chem. 2003, 42, 4673. (f) Peveling, K.; Dannappel,
K.; Schurmann, M.; Costisella, B.; Jurkschat, K. Organometallics 2006,
2
5, 368.
ASSOCIATED CONTENT
Supporting Information
Experimental section, spectra, tables, and CIF data for 1−3. This
(5) (a) Atefi, F.; McMurtrie, J. C.; Turner, P.; Duriska, M.; Arnold, D.
■
P. Inorg. Chem. 2006, 45, 6479. (b) Atefi, F.; McMurtrie, J. C.; Arnold, D.
P. Dalton Trans. 2007, 2163. (c) Sinelshchikova, A. A.; Nefedov, S. E.;
Enakieva, Y. Y.; Gorbunova, Y. G.; Tsivadze, A. Yu.; Kadish, K. M.;
Chen, P.; Bessmertnykh-Lemeune, A.; Stern, C.; Guilard, R. Inorg.
Chem. 2013, 52, 999. (d) Beletskaya, I.; Tyurin, V. S.; Tsivadze, A. Y.;
Guilard, R.; Stern, C. Chem. Rev. 2009, 109, 1659. (e) Xiangdong, Z.;
Chunhua, G.; Jing, Y.; Yang, Z.; Cui, H. Chin. J. Chem. 2009, 27, 1195.
*
S
AUTHOR INFORMATION
Notes
■
*
(
f) Marchetti, F.; Pettinari, C.; Pizzabiocca, A.; Drozdov, A. A.; Tryanov,
S. I.; Zhuravlev, C. O.; Semenov, S. N.; Belousov, Y. A.; Timokhin, I. G.
Inorg. Chim. Acta 2010, 363, 4038. (g) Liu, X.; Guo, G. C.; Liu, B.; Chen,
W. T.; Huang, J. S. Cryst. Growth Des. 2005, 5, 841. (h) Spichal, Z.;
Jancarik, A.; Mazal, C.; Pinkas, J.; Pekarkova, P.; Necas, M. Polyhedron
The authors declare no competing financial interest.
2
013, 62, 83 and references cited therein. (i) Pekarkova, P.; Spichal, Z.;
Taborsky, P.; Necas, M. Luminescence 2011, 26, 650.
6) (a) Maxim, C.; Matni, A.; Geoffroy, M.; Andruh, M.; Hearns, N. G.
ACKNOWLEDGMENTS
We are grateful to CSIR, India, for financial support and USIC,
University of Delhi, for NMR and X-ray diffraction facilities.
■
(
R.; Clerac, R.; Avarvari, N. New J. Chem. 2010, 34, 2319. (b) Sues, P. E.;
Lough, A. J.; Morris, R. H. Inorg. Chem. 2012, 51, 9322. (c) Kaempfe, P.;
Stock, N. Z. Anorg. Allg. Chem. 2008, 634, 714.
(7) (a) Rodriguez-Palacios, R.; Reyes-Lezama, M.; Marquez-Pallares,
L.; Lemus-Santana, A. A.; Sanchez-Guadarrama, O.; Hopfl, H.; Zuniga-
Villarreal, N. Polyhedron 2010, 29, 3103. (b) Lemus-Santana, A. A.;
Reyes-Lezama, M.; Zuniga-Villarreal, N.; Toscano, R. A.; Espinosa-
Perez, G. E. Organometallics 2006, 25, 1857.
DEDICATION
■
(
We dedicate this paper to Prof. Ramaswamy Murugavel
Department of Chemistry, Indian Institute of Technology
Bombay, Bombay, India).
(
8) Calcagno, P.; Kariuki, B. M.; Kitchin, S. J.; Robinson, J. M. A.; Philp,
D.; Harris, K. D. M. Chem.Eur. J. 2000, 6, 2338.
9) (a) Barder, T. E.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 5096.
REFERENCES
■
(
1) (a) Lehn, J. M. Angew. Chem., Int. Ed. 2013, 52, 2836. (b) Cook, T.
(
R.; Zheng, Y. R.; Stang, P. J. Chem. Rev. 2013, 113, 734. (c) Inokuma, Y.;
Kawano, M.; Fujita, M. Nat. Chem. 2011, 3, 349. (d) Wiester, M. J.;
Ulmann, P. A.; Mirkin, C. A. Angew. Chem., Int. Ed. 2011, 50, 114.
(
b) To confirm the formation of OP−PO, the free P−P ligand was
subjected to reaction conditions similar to those of 1; crystalline
products A containing a mixture of OP−PO and P−P were
(
e) Wang, Z. J.; Clary, K. N.; Bergman, R. G.; Raymond, K. N.; Dean
1
obtained; H NMR study indicates that 75% of P−P was converted into
Toste, F. Nat. Chem. 2013, 5, 100. (f) Smulders, M. M. J.; Riddell, I. A.;
Browne, C.; Nitschke, J. R. Chem. Soc. Rev. 2013, 42, 1728. (g) Saalfrank,
R. W.; Maid, H.; Scheurer, A. Angew. Chem., Int. Ed. 2008, 47, 8794.
OP−PO (Figure S4 in the SI).
(10) Chuang, C. H.; Sathiyendiran, M.; Tseng, Y. H.; Wu, J. Y.; Hsu, K.
C.; Hung, C. H.; Wen, Y. S.; Lu, K. L. Organometallics 2010, 29, 283.
11) Yi, X.; Zhao, J.; Sun, J.; Guo, S.; Zhang, H. Dalton Trans. 2013, 42,
062 and references cited therein.
(
h) Hiratani, K.; Albrecht, M. Chem. Soc. Rev. 2008, 37, 2413. (i) Ward,
(
2
M. D. Chem. Commun. 2009, 4487. (j) Han, Y. F.; Li, H.; Jin, G. X. Chem.
Commun. 2010, 46, 6879. (k) Saha, M. L.; De, S.; Pramanik, S.;
Schmittel, M. Chem. Soc. Rev. 2013, 42, 6860. (l) Frischmann, P. D.;
MacLachlan, M. J. Chem. Soc. Rev. 2013, 42, 871. (m) Lippert, B.;
Miguel, P. J. S. Chem. Soc. Rev. 2011, 40, 4475. (n) Sauvage, J. P.;
Amabilino, D. B. Top. Curr. Chem. 2012, 323, 107. (o) Therrien, B. Top.
Curr. Chem. 2012, 319, 35. (p) Zangrando, E.; Casanova, M.; Alessio, E.
Chem. Rev. 2008, 108, 4979. (q) Chifotides, H. T.; Dunbar, K. R. Acc.
Chem. Res. 2013, 46, 894. (r) Yam, V. W. W.; Wong, K. M. C. Chem.
Commun. 2011, 47, 11579. (s) Safont-Sempere, M. M.; Fernandez, G.;
Wurthner, F. Chem. Rev. 2011, 111, 5784. (t) Lim, S. H.; Su, Y.; Cohen,
S. M. Angew. Chem., Int. Ed. 2012, 51, 5106. (u) Cook, T. R.; Vajpayee,
1
0219
dx.doi.org/10.1021/ic401257w | Inorg. Chem. 2013, 52, 10217−10219