G Model
CPL42881–20
ARTICLE IN PRESS
C.L. Øpstad et al. / Chemistry and Physics of Lipids xxx (2014) xxx–xxx
19
471
Appendix A. Supplementary data
472
473
474
References
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
Adami, R.C., Seth, S., Harvie, P., Johns, R., Fam, R., Fosnaugh, K., Zhu, T.Y., Farber, K., McCutcheon, M., Goodman, T.T., Liu, Y., Chen, Y., Kwang, E., Templin, M.V., Severson, G.,
Brown, T., Vaish, N., Chen, F., Charmley, P., Polisky, B., Houston, M.E., 2011. An amino acid-based amphoteric liposomal delivery system for systemic administration of
siRNA. Mol. Ther. 19, 1141–1151.
Almofti, M.R., Harashima, H., Shinohara, Y., Almofti, A., Li, W.H., Kiwada, H., 2003. Lipoplex size determines lipofection efficiency with or without serum. Mol. Membr. Biol.
20, 35–43.
Antipina, M.N., Schulze, I., Heinze, M., Dobner, B., Langner, A., Brezesinski, G., 2009. Physical–chemical properties and transfection activity of cationic lipid/DNA complexes.
ChemPhysChem 10, 2471–2479.
Balbino, T.A., Gasperini, A.A.M., Oliveira, C.L.P., Azzoni, A.R., Cavalcanti, L.P., de La Torre, L.G., 2012. Correlation of the physicochemical and structural properties of pDNA/cationic
liposome complexes with their in vitro transfection. Langmuir 28, 11535–11545.
Bergelson, L.D., 1970. Diol lipids. Prog. Chem. Fats Lipids 10, 241–286.
Breukers, S., Øpstad, C.L., Sliwka, H.R., Partali, V., 2009. Hydrophilic carotenoids: surface properties and aggregation behavior of the potassium salt of the highly unsaturated
diacid norbixin. Helv. Chim. Acta 92, 1741–1747.
Byun, H.S., Bittman, R., 1996. Efficient stereospecific synthesis of diamide analogs of phosphatidylcholine starting from 1-(4ꢀ-methoxyphenyl)-sn-glycerol. J. Org. Chem. 61,
8706–8708.
Chang, C.D., Siegel, C., Lee, E., Harris, D.J., 1997. Intermolecular acyl group exchange between cationic lipid and co-lipid of cationic lipid-based gene transfer agents. Abstr.
Pap. 214 Nat. Meeting, Am. Chem. Soc., 19-ANYL.
Chu, Y., Masoud, M., Gebeyehu, G., 2009. US Patent 7,479,573. Transfection Reagents, Invitrogen, USA.
Coste, J., Frérot, E., Jouin, P., 1994. Coupling N-methylated amino-acids using pybrop and pyclop halogenophosphonium salts – mechanism and fields of application. J. Org.
Chem. 59, 2437–2446.
Dabkowska, A.P., Barlow, D.J., Hughes, A.V., Campbell, R.A., Quinn, P.J., Lawrence, M.J., 2012. The effect of neutral helper lipids on the structure of cationic lipid monolayers. J.
R. Soc. Interface 9, 548–561.
Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., Ringold, G.M., Danielsen, M., 1987. Lipofection – a highly efficient, lipid-mediated
DNA-transfection procedure. Proc. Natl. Acad. Sci. U.S.A. 84, 7413–7417.
Floch, V., Loisel, S., Guenin, E., Hervé, A.C., Clément, J.C., Yaouanc, J.J., des Abbayes, H., Férec, C., 2000. Cation substitution in cationic phosphonolipids: a new concept to
improve transfection activity and decrease cellular toxicity. J. Med. Chem. 43, 4617–4628.
Foss, B.J., Nalum Naess, S., Sliwka, H.R., Partali, V., 2003. Stable and highly water-dispersible, highly unsaturated carotenoid phospholipids – surface properties and aggregate
size. Angew. Chem. Int. Ed. 42, 5237–5240.
Foss, B.J., Sliwka, H.R., Partali, V., Cardounel, A.J., Zweier, J.L., Lockwood, S.F., 2004. Direct superoxide anion scavenging by a highly water-dispersible carotenoid phospholipid
evaluated by electron paramagnetic resonance (EPR) spectroscopy. Bioorg. Med. Chem. Lett. 14, 2807–2812.
Foss, B.J., Sliwka, H.R., Partali, V., Köpsel, C., Mayer, B., Martin, H.D., Zsila, F., Bikadi, Z., Simonyi, M., 2005a. Optically active oligomer units in aggregates of a highly unsaturated,
optically inactive carotenoid phospholipid. Chem. Eur. J. 11, 4103–4108.
Foss, B.J., Sliwka, H.R., Partali, V., Naess, S.N., Elgsaeter, A., Melø, T.B., Naqvi, K.R., 2005b. Hydrophilic carotenoids: surface properties and aggregation behavior of a highly
unsaturated carotenoid lysophospholipid. Chem. Phys. Lipids 134, 85–96.
Foss, B.J., Sliwka, H.R., Partali, V., Naess, S.N., Elgsaeter, A., Melø, T.B., Naqvi, K.R., O‘Malley, S., Lockwood, S.F., 2005c. Hydrophilic carotenoids: surface properties and aqueous
aggregation of a rigid, long-chain, highly unsaturated dianionic bolaamphiphile with a carotenoid spacer. Chem. Phys. Lipids 135, 157–167.
Ginn, S.L., Alexander, I.E., Edelstein, M.L., Abedi, M.R., Wixon, J., 2013. Gene therapy clinical trials worldwide to 2012 – an update. J. Gene Med. 15, 65–77.
Goldberg, M.S., (Ph.D. Thesis) 2008. Screening, Synthesis, and Applications of “Lipidoids”, A Novel Class of Molecules Developed for the Delivery of RANi Therapeutics,
Chemistry. Massachusets Institute of Technology, Boston, pp. 35.
Hirsch-Lerner, D., Zhang, M., Eliyahu, H., Ferrari, M.E., Wheeler, C.J., Barenholz, Y., 2005. Effect of “helper lipid” on lipoplex electrostatics. Biochim. Biophys. Acta 1714, 71–84.
Horn, D., Rieger, J., 2001. Organic nanoparticles in the aqueous phase – theory, experiment, and use. Angew. Chem. Int. Ed. 40, 4331–4361.
Ivanova, E.A., Maslow, M.A., Kabilova, T.O., Puchkov, P.A., Alekseeva, A.S., Boldyrev, I.A., Vlassov, V.V., Serebrennikova, G.A., Morozova, N.G., Zenkova, M.A., 2013. Struc-
ture–transfection acitivity relationships in a series of novel cationic lipids with heterocycic head-groups. Org. Biomol. Chem. 11, 7164–7178.
Jones, C.H., Chen, C.K., Ravikrishnan, A., Rane, S., Pfeifer, B.A., 2013. Overcoming nonviral gene delivery barriers: perspective and future. Mol. Pharm. 10, 4082–4098.
Kedika, B., Patri, S.V., 2011. Design, synthesis, and in vitro transfection biology of novel tocopherol based monocationic lipids: a structure–activity investigation. J. Med. Chem.
54, 548–561.
Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J., Svergun, D.I., 2003. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr.
36, 1277–1282.
Koynova, R., 2010. Analysis of lipoplex structure and lipid phase changes. Methods Mol. Biol. 606, 399–423.
Koynova, R., Tenchov, B., 2009. Cationic phospholipids: structure–transfection activity relationships. Soft Matter 5, 3187–3200.
Koynova, R., Tenchov, B., 2010. Cationic lipids: molecular structure/transfection activity relationships and interactions with biomembranes. Top. Curr. Chem. 296, 51–93.
Koynova, R., Tenchov, B., Wang, L., MacDonald, R.C., 2009. Hydrophobic moiety of cationic lipids strongly modulates their transfection activity. Mol. Pharm. 6, 951–958.
Larsen, E., Abendroth, J., Partali, V., Schulz, B., Sliwka, H.R., Quartey, E.G.K., 1998. Combination of vitamin E with a carotenoid: alpha-tocopherol and trolox linked to beta-
apo-8ꢀ-carotenoic acid. Chem. Eur. J. 4, 113–117.
Li, W.J., Szoka, F.C., 2007. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res. 24, 438–449.
Liberska, A., Unciti-Broceta, A., Bradley, M., 2009. Very long-chain fatty tails for enhanced transfection. Org. Biomol. Chem. 7, 61–68.
Loizeau, D., Le Gall, T., Mahfoudhi, S., Berchel, M., Maroto, A., Yaouanc, J.J., Jaffres, P.A., Lehn, P., Deschamps, L., Montier, T., Giamarchi, P., 2013. Physicochemical properties of
cationic lipophosphoramidates with an arsonium head group and various lipid chains: a structure–activity approach. Biophys. Chem. 171, 46–53.
Mangroo, D., Gerber, G.E., 1988. Phospholipid synthesis – effects of solvents and catalysts on acylation. Chem. Phys. Lipids 48, 99–108.
Mathematica, 2010. Mathematica Version 8.0. Wolfram Research Inc., University of Illinois Press, Champaign, IL.
Merkel, O.M., Mintzer, M.A., Librizzi, D., Samsonova, O., Dicke, T., Sproat, B., Garn, H., Barth, P.J., Simanek, E.E., Kissel, T., 2010. Triazine dendrimers as nonviral vectors for
in vitro and in vivo RNAi: the effects of peripheral groups and core structure on biological activity. Mol. Pharm. 7, 969–983.
Mineva, T., Krishnamurty, S., Salahub, D.R., Goursot, A., 2013. Temperature dependence of the molecular conformations of dilauroyl phosphatidylcholine: a density functional
study. Int. J. Quantum Chem. 113, 631–636.
Moghaddam, B., McNeil, S.E., Zheng, Q., Mohammed, A.R., Perie, Y., 2011. Exploring the correlation between lipid packing in lipoplexes and their transfection efficacy.
Pharmaceutics 3, 846–848.
Niculescu-Duvaz, D., Heyes, J., Springer, C.J., 2003. Structure–activity relationship in cationic lipid mediated gene transfection. Curr. Med. Chem. 10, 1233–1261.
Øpstad, C.L., Sliwka, H.R., Partali, V., Elgsaeter, A., Leopold, P.L., Jubeli, E., Khalique, N.A., Raju, L., Pungente, M.D., 2013. Synthesis, self-assembling and gene delivery potential
of a novel highly unsaturated, conjugated cationic phospholipid. Chem. Phys. Lipids 170–171, 65–73.
Popplewell, L.J., Abu-Dayya, A., Khanna, T., Flinterman, M., Khalique, N.A., Raju, L., Øpstad, C.L., Sliwka, H.R., Partali, V., Dickson, G., Pungente, M.D., 2012. Novel cationic
carotenoid lipids as delivery vectors of antisense oligonucleotides for exon skipping in Duchenne muscular dystrophy. Molecules 17, 1138–1148.
Pozzi, D., Marchini, C., Cardarelli, F., Amenitsch, H., Garulli, C., Bifone, A., Caracciolo, G., 2012. Transfection efficiency boost of cholesterol-containing lipoplexes. Biochim.
Biophys. Acta 1818, 2335–2343.
Predvoditilev, D.A., Suvorkin, S.V., Nifant’ev, E.E., 2001. New approach to the synthesis of phosphamide models of cationic phosphatidyl cholines. Russ. J. Gen. Chem. 71,
873–880.
Rosenzweig, H.S., Rakhmanova, V.A., McIntosh, T.J., MacDonald, R.C., 2000. O-alkyl dioleoylphosphatidylcholinium compounds: the effect of varying alkyl chain length on
their physical properties and in vitro DNA transfection activity. Bioconjug. Chem. 11, 306–313.
Ross, P.C., Hui, S.W., 1999. Lipoplex size is a major determinant of in vitro lipofection efficiency. Gene Ther. 6, 651–659.
Please cite this article in press as: Øpstad, C.L., et al., Novel cationic polyene glycol phospholipids as DNA transfer
reagents—Lack of a structure–activity relationship due to uncontrolled self-assembling processes. Chem. Phys. Lipids (2014),