7482
J . Org. Chem. 1997, 62, 7482-7484
Sch em e 1
A Ster eoselective Syn th esis of
1,6-Did eoxyn ojir im ycin by
Dou ble-Red u ctive Am in a tion of Dica r bon yl
Su ga r †
Dilip D. Dhavale,* Nabendu N. Saha, and
Vijaya N. Desai
Department of Chemistry, Garware Research Center,
University of Pune, Pune 411 007, India
Received May 7, 1997
Polyhydroxylated piperidine alkaloids manifest prom-
ising therapeutic applications as antiviral agents1 and
in regulation of carbohydrate metabolic disorders.2 In
view of the particular attention on anti-HIV activity in
the AIDS area, a number of chemical and enzymatic
syntheses of deoxy aza sugars,3 in particular, 1-deoxy-
nojirimycin4 (1a ), have been reported in recent years.
However, 1,6-dideoxynojirimycin (1b) is still a somewhat
unexplored class of aza sugars in spite of their interesting
glycosidase inhibitory activity.4b Only two syntheses are
so far reported, the first approach4b involves preparation
of azido keto sugar 11 via enzymatic aldol condensation
of 3-azido-2-hydroxypropanal and dihydroxyacetone phos-
phate followed by ring closure using a palladium-
catalyzed stereocontrolled reductive amination reaction,
while the second sequence5 makes use of an asymmetric
Diels-Alder reaction of hexa-2,4-dienal O-methyloxime
with a chiral chloronitroso derivative of D-mannose
followed by osmylation to diol and nucleophilic ring
opening of cyclic sulfate. Recent efforts6 in our laboratory
directed toward the synthesis of 6-deoxynojirimycin (1c)
have led us to the development of a practical route to
1,6-dideoxynojirimycin (1b). Our approach hinges on the
double-reductive amination of suitably protected 6-deoxy-
5-keto-D-glucose, a dicarbonyl sugar, using simple reac-
tions that allow good reproducibility on a multigram scale
(Scheme 1). We have adopted this strategy because of
the vital role played by the 5-keto sugars in the biogen-
esis of nojirimycin and analogs, wherein the carbon chain
comes from D-glucose and the amino group in aza sugars
has been introduced probably using the 5-keto function-
ality.7
† Dedicated to Prof. M. S. Wadia on the occasion of his 60th birthday.
* To whom correspondence should be addressed. Fax: 0091-212-
353 899. E-mail: ddd@chem.unipune.ernet.in.
(1) (a) Karpus, A.; Fleet, G. W. J .; Dwek, R. A.; Petursson, S.;
Namgoong, S.; Ramsden, N. G.; J acob, G. S.; Rademacher, T. W. Proc.
Natl. Acad. Sci. U.S.A. 1988, 85, 9229-9233. (b) Fleet, G. W. J .;
Karpus, A.; Dwek, R. A.; Fellows, L. E.; Tyms, A. S.; Petursson, S.;
Namgoong, S. K.; Ramsden, N. G.; Smith, P. W.; Son, J . C.; Wilson,
F.; Witty, D. R.; J acob, G. S.; Rademacher, T. W. FEBS Lett. 1988,
237, 128-132. (c) Walker, B. D.; Kowalski, M.; Goh, W. C.; Kozarsky,
K.; Krieger, M.; Rosen, C.; Rohrschneider, L.; Haseltine, W. A.;
Sodroski, J . Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 8120-8124. (d)
Winkler, D. A.; Holan, G. J . Med. Chem. 1989, 32, 2084-2089.
(2) (a) Paulsen, H.; Todt, K. Adv. Carbohydr. Chem. 1968, 23, 115-
232. (b) Fellows, L. E. Chem. Ber. 1987, 23, 842-844. (c) Truscheit,
E.; Frommer, W.; J unge, B.; Muller, L.; Schmith, D. D.; Wingender,
W. Angew. Chem., Int. Ed. Engl. 1981, 20, 744-761. (d) Inouye, S.;
Tsuruoka, T.; Ito, A.; Niida, T. Tetrahedron 1968, 24, 2125-2144.
(e) Muller, L. In Biotechnology; Rehn, H.-J ., Reed, G., Eds.; VCH
Verlagsgesellschaft: Weinheim, 1985; Vol. 4, Chapter 18. (f) Sinnott,
L. M. Chem. Rev. 1990, 90, 1171-1202. (g) Winchester, B.; Fleet, G.
W. J . Glycobiology 1992, 2, 199-210. (h) Wong, C.-H.; Halcomb, R.
L.; Ichikawa, Y.; Kajimoto, T. Angew. Chem., Int. Ed. Engl. 1995, 34,
412-432. (i) Wong, C.-H.; Halcomb, R. L.; Ichikawa, Y.; Kajimoto, T.
Angew. Chem., Int. Ed. Engl. 1995, 34, 521-546 and references cited
therein.
(3) For preparation of 1,5-dideoxy-1,5-imino-L-fucitol, see: (a) Ta-
kahashi, S.; Kuzuhara, H. J . Chem. Soc. Perkin Trans. I 1997, 607-
612 and references cited therein. (b) Fleet, G. W. J .; Shaw, A. N.;
Evans, S. V.; Fellows, L. E. J . Chem. Soc., Chem. Commun. 1985, 841-
842. (c) Fleet, G. W. J .; Ramsden, N. G.; Dwek, R. A.; Rademacher, T.
W.; Fellows, L. E.; Nash, R. J .; Green, D. St. C.; Winchester, B. J .
Chem. Soc., Chem. Commun. 1988, 483-485. (d) Ermet, P.; Vasella,
A. Helv. Chim. Acta 1991, 74, 2043-2047. (e) Defoin, A.; Sarazin, H.;
Streith, J . Synlett 1995, 11, 1187-1188. (f) Hammann, P. In Organic
Synthesis Highlights II; Waldmann, H., Ed.; VCH: Weinheim, 1995;
pp 323-334.
Resu lts a n d Discu ssion
Our previous report8 describes a synthesis of sugar
â-keto ester 3 by the reaction of 1,2-O-isopropylidene-3-
O-benzyl-R-D-xylo-pentodialdose (2) with ethyl diazoace-
tate in the presence of BF3-OEt2. Decarbalkoxylation9
of 3 using sodium chloride in wet DMSO afforded 5-keto
sugar 4 in good yield10 (Scheme 2). Hydrolysis of the 1,2-
O-isopropylidine functionality in 4 gave 6-deoxy-3-O-
benzyl-R-D-xylo-hexofuran-5-ulose (5). The critical double-
reductive amination reaction with benzhydrylamine,
NaCNBH3, and acetic acid in methanol at -78 °C
afforded a diastereomeric mixture of piperidines 6a ,b
corresponding to D-gluco and L-ido configurations in the
ratio 86:14, respectively. The separation of diastereomers
(4) For the preparation of 1-deoxynojirimycin, see: (a) Baxter, E.
W.; Reitz, A. B. J . Org. Chem. 1994, 59, 3175-3185 and references
cited therein. (b) Kajimoto, T.; Liu, K. K.-C.; Pederson, R. L.; Zhong,
Z.; Ichikawa, Y.; Porco, J . A., J r.; Wong, C.-H. J . Am. Chem. Soc. 1991,
113, 6187-6196 and references cited therein. (c) Kajimoto, T.; Chen,
L.; Liu, K. K.-C.; Wong, C.-H. J . Am. Chem. Soc. 1991, 113, 6678-
6680. (d) Ermet, P.; Vasella, A. Helv. Chim. Acta 1991, 74, 2043-
2047. (e) Iida, H.; Yamazaki, N.; Kibayashi, C. J . Org. Chem. 1987,
52, 3337-3342. (f) Qiao, L.; Murray, B. W.; Shimakazi, M.; Schultz,
J .; Wong, C.-H. J . Am. Chem. Soc. 1996, 118, 7653-7662. (g) Igarashi,
Y.; Ichikawa, M.; Ichikawa, Y. Bioorg. Med. Chem. Lett. 1996, 6, 553-
558. (h) Brandstetter, T. W.; Davis, B.; Hyett, D.; Smith, C.; Hackett,
L.; Winchester, B. G.; Fleet, G. W. J . Tetrahedron Lett. 1995, 36, 7511-
7514. (i) Legler, G.; Stuetz, A. E.; Immich, H. Carbohydr. Res. 1995,
272, 17-30. (j) Takahashi, S.; Kuzuhara, H. Chem. Lett. 1992, 21-
24. (k) Wong, C.-H.; Krach, T.; Narvor, C. G. L.; Ichikawa, Y.; Look,
G. C.; Gaeta, F.; Thompson, D.; Nicolau, K. C. Tetrahedron Lett. 1991,
32, 4867-4870. (l) Wong, C.-H.; Ichikawa, Y.; Krach, T.; Narvor, C.
G. L.; Dumas, D. P.; Look, G. C. J . Am. Chem. Soc. 1991, 113, 8137-
8145. (m) Liu, K. K.-C.; Kajimoto, T.; Chen, L.; Zhong, Z.; Ichikawa,
Y.; Wong, C.-H. J . Org. Chem. 1991, 56, 6280-6289.
(5) Defoin, A.; Sarazin, H.; Streith, J . Helv. Chim. Acta 1996, 79,
560-567.
(6) Dhavale, D. D.; Desai, V. N.; Sindkhedkar, M. D.; Mali, R. S.;
Castellari, C.; Trombini, C. Tetrahedron: Asymmetry 1997, 8, 1475-
1486.
(7) Hardick, D. J .; Hutchinson, D. W.; Trew, S. J .; Wellington, E.
M. H. Tetrahedron 1992, 48, 6285-6296.
(8) Dhavale, D. D.; Bhujbal, N. N.; J oshi, P.; Desai, S. G. Carbohydr.
Res. 1994, 263, 303-307.
(9) Krapcho, A. P.; J ahngen, E. G. E., J r.; Lovey, A. J . Tetrahedron
Lett. 1974, 1091-1094.
(10) Conversion of 2 to 4 via Grignard reaction using CH3MgI
followed by oxidation with PCC or J ones reagent is reported in ∼46%
overall yield; see: (a) Kiely, D. E.; Morris, P. E., J r.; J . Carbohydr.
Chem. 1990, 9, 661-673. (b) Wolfrom, M. L.; Hanessian, S. J . Org.
Chem. 1962, 27, 2107-2109. (c) Kraus, G. A.; Shi, J . J . Org. Chem.
1990, 55, 4922-4925; whereas our method, which is biomimetic, gives
68% yield. Surprisingly 4, which is the logical precursor to 1b, has
not been earlier exploited for the synthesis of aza sugars.
S0022-3263(97)00826-8 CCC: $14.00 © 1997 American Chemical Society