8292
M. J. Zacuto, D. Cai / Tetrahedron Letters 46 (2005) 8289–8292
speculated stereochemistry.14a Addition of methoxide to
30 would afford 31, which can undergo alkoxide-pro-
moted disrotatory electrocyclic ring opening with con-
certed expulsion of iodide3a,b,12 to afford the Z-
acrylate. Given the available data, this seems to be the
most reasonable mechanism.
suitable for further use, but could be purified by silica
gel chromatography. Data for 1: 1H NMR, 13C NMR, MS
and HPLC agree with data obtained from commercially
available material. Data for 2: 1H NMR (CDCl3,
400 MHz): d 5.83 (t, J = 7.6 Hz, 1H), 3.73 (s, 3H), 2.45–
2.35 (m, 2H), 2.26 (q, J = 7.6 Hz, 2H), 1.02 (t, J = 7.6 Hz,
3H), 1.00 (t, J = 7.6 Hz, 3H); 13C NMR (CDCl3,
400 MHz): d 168.6, 142.2, 132.8, 51.0, 27.4, 22.9, 13.9,
1
In summary, we have described the iodine-mediated
one-stepoxidation of symmetric ketones to Z-a,b-unsat-
urated esters. This method offers rapid access to valu-
able acrylates from easily accessible and inexpensive
starting materials, with no organic waste products.
Mechanistic studies suggest that an a,a0-diiodoketone
undergoes Favorskii-related rearrangement, via an elec-
trocyclic reaction, to afford a,b-unsaturated ester.
13.6. Data for 3: H NMR (CDCl3, 400 MHz): d 5.84 (t,
J = 7.2 Hz, 1H), 3.73 (s, 3H), 2.37 (td, J1 = 7.6 Hz,
J2 = 7.6 Hz, 2H), 2.22 (t, J = 7.6 Hz, 2H), 1.48–1.37 (m,
4H), 0.92 (t, J = 7.2 Hz, 3H), 0.89 (t, J = 7.2 Hz, 3H); 13
C
NMR (CDCl3, 400 MHz): d 168.7, 141.6, 131.8, 50.9, 36.5,
1
31.5, 22.6, 22.1, 13.6, 13.4. Data for 4: H NMR (CDCl3,
400 MHz): d 5.84 (t, J = 7.4 Hz, 1H), 3.73 (s, 3H), 2.39 (td,
J1 = 7.2 Hz, J2 = 7.2 Hz, 2H), 2.23 (t, J = 7.6 Hz, 2H),
1.43–1.25 (m, 8H), 0.99 (t, J = 7.2 Hz, 3H), 0.89 (t,
J = 7.2 Hz, 3H); 13C NMR (CDCl3, 400 MHz): d 168.8,
141.7, 132.0, 51.1, 34.3, 31.7, 31.3, 29.3, 22.4, 22.2, 13.9,
13.9. Data for 5: 1H NMR (CDCl3, 400 MHz): d 5.46 (dd,
J1 = 9.6 Hz, J2 = 1.2 Hz, 1H), 3.74 (s, 3H), 2.88–2.78 (m,
1H), 2.69–2.57 (m, 1H), 1.04 (t, J = 6.8 Hz, 3H), 0.98 (t,
J = 6.5 Hz, 3H); 13C NMR (CDCl3, 400 MHz): d 169.5,
141.8, 136.6, 50.9, 31.2, 28.5, 22.7, 21.7. Data for 6: 1H
NMR (CDCl3, 400 MHz): d 7.38–7.20 (m, 10H), 6.11 (t,
J = 7.6 Hz, 1H), 3.85 (d, J = 7.6 Hz, 2H), 3.72 (s, 3H),
3.63(s, 2H); 13C NMR (CDCl3, 400 MHz): d 167.8, 141.6,
140.0, 139.2, 131.6, 128.7, 128.5, 128.5, 128.3, 126.2, 126.2,
51.3, 40.4, 35.8.
References and notes
1. Wadsworth, W. S., Jr. Org. React. 1977, 25, 73; For
example, the use of phosphonoacetate reagents for the
synthesis of Z-2,3-trisubstituted acrylates is hampered by
the susceptibility of the products to isomerization under
the reaction conditions; see Wadsworth, W. S., Jr.;
Emmons, W. D. Org. Synth. 1965, 45, 44.
2. (a) Morimoto, T.; Sekiya, M. Chem. Pharm. Bull. 1982,
30, 3513; (b) Kimpe, N. D.; Stanoeva, E.; Boeykens, M.
Synthesis 1994, 427; For a proposed a,a-diiodo interme-
diate see (c) Barba, F.; Elinson, M. N.; Escudero, J.;
Guirado, M.; Feducovich, S. K. Electrochim. Acta 1998,
43, 973; (d) Elinson, M. N.; Feducovich, S. K.; Zaimov-
skaya, T. A.; Dorofeev, A. S.; Vereshchagin, A. N.;
Mikishin, G. I. Russ. Chem. Bull., Int. Ed. 2003, 52, 998.
3. (a) Engler, T. A.; Falter, W. Tetrahedron Lett. 1986, 27,
4115; (b) Engler, T. A.; Falter, W. Tetrahedron Lett. 1986,
27, 4119; (c) Rappe, C. Org. Synth. 1973, 53, 123; (d)
Kennedy, J.; McCorkindale, N. J.; Raphael, R. A.; Scott,
W. T.; Zwanenburg, B. Proc. Chem. Soc. 1964, 168; (e)
Rappe, C. Acta. Chem. Scand. 1963, 17, 2766; (f) Wagner,
R. B.; Moore, J. A. J. Am. Chem. Soc. 1950, 72, 3655; (g)
Abad, A.; Arno, M.; Pedro, J. R.; Seoane, E. Chem. Ind.
1981, 5, 157; (h) Krabbenhoft, H. O. J. Org. Chem. 1979,
44, 4285.
9. Hojo, H.; Harada, H.; Ito, H.; Hosomi, A. J. Am. Chem.
Soc. 1997, 119, 5459.
10. 1H and 13C NMR data agreed with data for known a,a-
diiodoketones. For example, see: Heasley, V. L.; Shell-
hamer, D. F.; Chappell, A. E.; Cox, J. M.; Hill, D. J.;
McGovern, S. L.; Eden, C. C.; Kissel, C. L. J. Org. Chem.
1998, 63, 4433.
11. The 1H and 13C data agrees well with known data for 2,4-
diiodo-3-pentanone: see Montanˇa, A. M.; Grima, P. M.
Synth. Commun. 2003, 33, 265–279; For a similar iso-
merization, see: Rappe, C. Acta Chem. Scand. 1963, 17,
2140.
12. (a) Hoffmann, R.; Woodward, R. B. Accounts Chem. Res.
1968, 1, 17, and references cited therein; (b) DePuy, C. H.
Accounts Chem. Res. 1968, 1, 33.
13. The iodocyclopropanone intermediate 26 is presumed to
contain a proton at the a-carbon, as isotopic scrambling at
the a-carbon of the ketone should be minimal since the
procedure involves the slow addition of base to a mixture
of the ketone and I2. This assumption was affirmed when
the reaction was run to 50% conversion and NMR data
indicated only 20% D incorporation into the unreacted
ketone.
4. For an exception, see Ref. 2c,d. No selectivity is observed
under these conditions.
5. (a) Palaty, J.; Abbott, F. S. J. Med. Chem. 1995, 38, 3398;
(b) Okada, K.; Kiyoka, F.; Nakanishi, E.; Hirano, M.;
Ono, J.; Matsuo, N.; Matsui, M. Agric. Biol. Chem. 1980,
44, 2595.
6. Japanese Patent # JP60028950; 1985.
7. Zacuto, M. J.; Cai, D. Tetrahedron Lett. 2005, 46, 447.
8. General experimental procedure for the synthesis of 1–5:
Ketone (5.0 mmol) was added to a solution of I2 (2.8 g,
11 mmol) in MeOH (20 mL), then cooled to À5 °C. A
solution of KOH (1.6 g of A.C.S. 85% KOH assay pellets)
in MeOH (18 mL) was then added over 25 min. The
solution was then allowed to warm gradually to room
temperature, and then stirred for an additional 1 h. The
solution was then concentrated, and the resulting slurry
was diluted with Pentane and filtered. Concentration
afforded the crude a,b-unsaturated ester which was
14. For related studies on isolated cyclopropane systems, see:
(a) Conia, J.-M.; Blanco, L. New J. Chem. 1983, 7, 399; (b)
Slougui, N.; Rousseau, G. Synth. Commun. 1982, 12, 401;
(c) Slougui, N.; Rousseau, G. Tetrahedron 1985, 41, 2643.
15. For a review of the mechanism of the Favorskii rear-
rangement, see: (a) Baretta, A.; Waegell, B. In Reactive
Intermediates; Abramovich, R. A., Ed.; Plenum: New
York, 1982; Vol. 2, Chapter 6. The stereochemistry of 29 is
speculated, but implied by the presumed stereochemistry
of 30 according to the Woodward–Hoffmann rules (see,
Refs. 12, 14a).