H. Görner et al.
FULL PAPER
unstable. The stability in acetonitrile-water mixtures (1:1) at pH 10.5 was
found to increase in the order 5, 2 and 1; the last two could be used within a
few minutes after establishing the pH, to record transient absorption
spectra. Compound 2' was used rather than 2 in some cases, due to its better
solubility.
[14] U. C. Yoon, J. W. Kim, J. Y. Ryu, S. J. Cho, S. W. Oh, P. S. Mariano, J.
Photochem. Photobiol. A: Chem. 1997, 106, 145.
[15] Z. Su, P. S. Mariano, D. E. Falvay, U. C. Yoon, S. W. Oh, J. Am. Chem.
Soc. 1998, 120, 10676.
[16] T. C. Barros, G. R. Molinari, P. Berci Filho, V. G. Toscano, M. J. Politi,
J. Photochem. Photobiol. A: Chem. 1993, 76, 55.
Absorption and emission spectra were recorded on spectrophotometers
(Perkin ± Elmer 554 and Hewlett Packard 8453) and spectrofluorimeters
(Perkin ± Elmer LS5 and Spex-Fluorolog), respectively. Note that the
fluorescence excitation spectrum does not generally coincide with the
absorption spectrum, owing to a very small Ff value and superposition of
fluorescence from trace impurities. Phosphorescence of O2(1Dg) at
1269 nm[39±41] was detected after the pulse, using a cooled Ge detector
(North Coast, EO 817FP), a silicon filter, an interference filter and an
amplifier (Comlinear, CLC-103) as described elsewhere.[11] The lifetimes
range from 10 ± 14 ms in ethanol to 60 ± 90 ms in dichloromethane. The
signal, extrapolated to the end of the 20 ns pulse (ID), was found to show a
linear dependence on the absorbed energy and on the laser intensity; the
slope of the latter plot is denoted as qD. The quantum FD in toluene was
obtained from qD values using optically matched solutions (A308 0.8) and
acridine as reference FDref 0.71.[40] For the values in other oxygen-
saturated solvents a correction has to be applied, using the rate constant
kr for radiative deactivation of O2(1Dg) relative to that in benzene (kor . The
kr/kor ratios taken from the literature range from 0.12 in D2O to 0.96 in
toluene.[41] The 248 or 308 nm output from one of two excimer lasers
(Lambda Physik EMG 200 and EMG 210 MSC; energy less than 100 mJ,
pulse width 20 ns) was used for excitation. The laser flash photolysis
apparatus and the detection system have been described elsewhere.[11, 39]
[17] T. C. Barros, S. Brochsztain, V. G. Toscano, P. Berci Filho, M. J. Politi,
J. Photochem. Photobiol. A: Chem. 1997, 111, 97.
[18] J. D. Coyle, G. L. Newport, A. Harriman, J. Chem. Soc. Perkin Trans. 2
1978, 133.
[19] J. D. Coyle, A. Harriman, G. L. Newport, J. Chem. Soc. Perkin Trans. 2
1979, 799.
[20] H. Hayashi, S. Nagakura, Y. Kubo, K. Maruyama, Chem. Phys. Lett.
1980, 72, 291.
[21] P. Berci Filho, V. G. Toscano, M. J. Politi, J. Photochem. Photobiol. A:
Chem. 1988, 43, 51.
[22] F. C. L. Almeida, V. G. Toscano, O. dos Santos, M. J. Politi, M. G.
Neumann, P. Berci Fo, J. Photochem. Photobiol. A: Chem. 1991, 58,
289.
[23] E. C. Hoyle, E. T. Anzures, P. Subramanian, R. Nagarajan, D. Creed,
Macromolecules 1992, 25, 6651.
[24] D. Creed, E. C. Hoyle, J. W. Jordan, C. A. Panday, R. Nagarajan, S.
Pankasem, A. M. Peeler, P. Subramanian, Macromol. Symp. 1997, 116,
1.
[25] V. Wintgens, P. Valet, J. Kossanyi, L. Biczok, A. Demeter, T. Berces, J.
Chem. Soc. Faraday Trans. 1994, 90, 411.
[26] I. Carmichael, G. L. Hug, J. Phys. Chem. Ref. Data 1986, 15, 1.
[27] a) E. Hayon, T. Ibata, N. N. Lichtin, M. Simic, J. Phys. Chem. 1972, 76,
2072; b) G. E. Adams, R. L. Willson, J. Chem. Soc. Faraday Trans. 1
1973, 69, 719.
.
For selective production of KH, 2-propanol was used; the radical anion
was generated by electron transfer from 1,4-diazabicyclo[2.2.2]octane or in
the presence of 2-propanol in water at pH 10 ± 11.[11]
[28] a) S. Baral-Tosh, S. K. Chattopadhyay, P. K. Das, J. Phys. Chem. 1984,
88, 1404; b) J. K. Hurley, H. Linschitz, A. Treinin, J. Phys. Chem. 1988,
92, 5151; c) K. Okada, M. Yamaji, H. Shikura, J. Chem. Soc. Faraday
Trans. 1998, 94, 861.
[29] K. Bobrowski, B. Marciniak, G. L. Hug, J. Photochem. Photobiol. A:
Chem. 1994, 81, 159.
[30] a) K. Bobrowski, B. Marciniak, G. L. Hug, J. Am. Chem. Soc. 1992,
114, 10279; b) K. Bobrowski, G. L. Hug, B. Marciniak, H. Kozubek, J.
Phys. Chem. 1994, 98, 537.
[31] a) B. Marciniak, G. L. Hug, K. Bobrowski, H. Kozubek, J. Phys. Chem.
1995, 99, 13560; b) G. L. Hug, B. Marciniak, K. Bobrowski, J.
Photochem. Photobiol. A: Chem. 1996, 95, 81.
For photodecomposition, lirr of 290 nm from a 1000 W Xe/Hg lamp
combined with a monochromator or 254 nm from a low pressure Hg lamp
was used. The concentration was adjusted such that the absorbance (in a
1 cm cell) was 1 ± 3 at lirr. The quantum yield Fd was obtained by using the
decrease of absorbance at 290 nm (or the increase in absorbance at the
initial minimum ꢀ 250 nm). Actinometry was performed with Aber-
chrome 540 for lirr 290 nm.[42] The measurements (unless specified
otherwise) were carried out after purging with argon prior to and during
irradiation at 24 Æ 28C.
[32] a) I. G. Gut, P. D. Wood, R. W. Redmond, J. Am. Chem. Soc. 1996,
118, 2366; b) P. D. Wood, R. W. Redmond, J. Am. Chem. Soc. 1996,
118, 4256.
Acknowledgements
We thank Professor K. Schaffner for his support, Dr. E. Bothe for
electrochemical measurements and Mr. L. J. Currell for technical assis-
tance.
[33] A. G. Griesbeck, private communication.
[34] E. Hayon, M. Simic, Acc. Chem. Res. 1974, 7, 114.
[35] a) D. G. Whitten, Y. J. Lee, J. Am. Chem. Soc. 1971, 93, 961; b) H.
Görner, P. Nikolov, R. Radinov, J. Photochem. Photobiol. A: Chem.
1995, 85, 23, and references therein.
[36] a) R. S. Glass, Top. Curr. Chem. 1999, 205, 1; b) K. Bobrowski, C.
Schöneich, J. Holcman, K.-D. Asmus, J. Chem. Soc. Perkin Trans. 2
1991, 353; c) C. Schöneich, K. Bobrowski, J. Holcman, K.-D. Asmus,
Oxidative Damage and Repair, Pergamon, Oxford, 1991, p. 380;
d) B. l. Miller, K. Kuczera, C. Schöneich, J. Am. Chem. Soc. 1998, 120,
3345.
[1] A. G. Griesbeck, H. Mauder, I. Müller, E.-M. Peters, K. Peters, H. G.
von Schnering, Tetrahedron Lett. 1993, 34, 453.
[2] A. G. Griesbeck, J. Hirt, K. Peters, E.-M. Peters, H. G. von Schnering,
Chem. Eur. J. 1996, 2, 1388.
[3] A. G. Griesbeck, A. Henz, W. Kramer, J. Lex, F. Nerowski, M.
Oelgemöller, K. Peters, E.-M. Peters, Helv. Chim. Acta 1997, 80, 912.
[4] A. G. Griesbeck, H. Mauder, Angew. Chem. Int. Ed. Engl. 1992, 31,
73; Angew. Chem. 1992, 104, 97.
[37] E. Bothe, private communication.
[38] a) D. Rehm, A. Weller, Isr. J. Chem. 1970, 8, 259; b) D. Rehm, A.
Weller, Ber. Bunsenges. Phys. Chem. 1969, 73, 834.
[39] H. Görner, Chem. Phys. Lett. 1998, 282, 381.
[5] A. G. Griesbeck, A. Henz, J. Hirt, V. Ptatschek, T. Engel, D. Löffler,
F. W. Schneider, Tetrahedron 1994, 50, 701.
[6] A. G. Griesbeck, Liebigs Ann. 1996, 1951.
[40] a) F. Wilkinson, W. P. Helman, A. B. Ross, J. Phys. Chem. Ref. Data
1993, 22, 113; b) R. W. Redmond, S. E. Braslavsky, Chem. Phys. Lett.
1988, 148, 523.
[41] a) R. D. Scurlock, S. Nonell, S. E. Braslavsky, P. R. Ogilby, J. Phys.
Chem. 1995, 99, 3521; b) R. D. Scurlock, P. R. Ogilby, J. Phys. Chem.
1987, 91, 4599; c) R. Schmidt, E. Afshari, J. Phys. Chem. 1990, 94, 4377.
[42] H. G. Heller, J. R. Langan, J. Chem. Soc. Perkin Trans. 2 1981, 341.
[7] A. G. Griesbeck, Chimica 1998, 52, 272.
[8] A. G. Griesbeck, EPA Newsletter 1998, 62, 3.
[9] A. G. Griesbeck, J. Hirt, W. Kramer, P. Dallakian, Tetrahedron 1998,
54, 3169.
[10] A. G. Griesbeck, W. Kramer, M. Oelgemöller, Synlett. 1999, 7, 1169.
[11] A. G. Griesbeck, H. Görner, J. Photochem. Photobiol. A: Chem. 1999,
129, 111.
[12] Y.Sato, H. Nakai, T. Mizoguchi, M. Kawanishi, Y. Hatanaka, Y.
Kanaoka, Chem. Pharm. Bull. 1982, 30, 1263.
[13] a) K. Okada, K. Okamoto, M. Oda, J. Am. Chem. Soc. 1988, 110, 8736;
b) K. Okada, K. Okamoto, N. Morita, K. Okubo, M. Oda, J. Am.
Chem. Soc. 1991, 113, 9402.
Received: June 26, 2000
Revised version: November 3, 2000 [F2567]
1538
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
0947-6539/01/0707-1538 $ 17.50+.50/0
Chem. Eur. J. 2001, 7, No. 7