FULL PAPER
was composed of a mixture of 2.0ϫ10–5 mm HDB and 20 mm
KNO3 at pH 7.0 (adjusted with sodium hydroxide). A fused silica
capillary of 57.5 cm (75 μm i.d., 375 μm o.d.) was used. The condi-
tions for the kinetic runs were as follows: separation voltage 15 kV,
capillary temperature 25 °C, cathodic pressure injection for 5 s with
0.5 psi. The carbon-containing products of the ClO2–TDO reaction
were identified by 13C NMR spectroscopy (Bruker AVANCE III
HD 600 MHz) with D2O as a frequency lock. A certain amount of
solid P2O5 was added to the solution to control the pH, and the
reaction was initiated by the addition of ClO2 solution to the TDO
solution. The collection of the 13C NMR spectroscopic data was
started when the color of ClO2 disappeared. In addition, the 13C
NMR spectra of urea and cyanamide were acquired for compari-
son.
[8] S. V. Makarov, Russ. Chem. Rev. 2001, 70, 885–895.
[9] H. Wang, Q. Li, C. Gao, J. Cleaner Prod. 2014, 84, 701–706.
[10] A. A. Cuadri, P. Partal, F. J. Navarro, M. Garcia-Morales, C.
Gallegos, Fuel 2011, 90, 2294–2300.
[11] C. K. Chua, A. Ambrosi, M. Pumera, J. Mater. Chem. 2012,
22, 11054–11061.
[12] Y. Wang, L. Sun, B. Fugetsu, Bull. Chem. Soc. Jpn. 2012, 85,
1339–1344.
[13] S. V. Makarov, R. Silaghi-Dumitrescu, J. Sulfur Chem. 2013,
34, 444–449.
[14] Q. Gao, B. Liu, L. Li, J. Wang, J. Phys. Chem. A 2007, 111,
872–877.
[15] S. V. Makarov, C. Mundoma, J. H. Penn, S. A. Svarovsky,
R. H. Simoyi, J. Phys. Chem. A 1998, 102, 6786–6792.
[16] E. Mambo, R. H. Simoyi, J. Phys. Chem. 1993, 97, 13662–
13667.
Data Treatment: The absorbance at λ = 360 nm, at which only
chlorine dioxide absorbs light, was used for evaluation. Absorbance
values higher than 1.2 were excluded from the data evaluation, be-
cause the absorbance–concentration curves start to deviate from
linearity above this value. The concentration ranges of the reactants
ClO2 and TDO were varied between 0.18–1.4 and 0.25–10.0 mm,
respectively, and the pH was kept between 1.87 and 3.07. For the
HPLC and CE tests, calibration curves for all detectable species
were determined to transform the measured peak areas into con-
centrations after qualitative information was collected. The corre-
lation coefficients were always above 0.999, which indicates that the
relationship between the peak area and the concentration is per-
fectly linear. To obtain the kinetic parameters for the proposed
model, the ZiTa/Chemmech program package[50] was used. Our cri-
terion for an acceptable fit for the relative fitting procedure to ob-
tain reliable kinetic parameters for the model was to achieve 4%,
as the precision of the concentration determination of the volatile
chlorine dioxide is ca. 3–5% during the course of the reaction.
[17] C. R. Chinake, R. H. Simoyi, S. B. Jonnalagadda, J. Phys.
Chem. 1994, 98, 545–550.
[18] J. B. Jones, C. R. Chinake, R. H. Simoyi, J. Phys. Chem. 1995,
99, 1523–1529.
[19] G. Cseko, Y. Hu, Y. Song, T. R. Kégl, Q. Gao, S. V. Makarov,
˝
A. K. Horváth, Eur. J. Inorg. Chem. 2014, 1875–1879.
[20] S. V. Makarov, E. V. Kudrik, Russ. Chem. Bull. Int. Ed. 2001,
50, 203–205.
[21] V. C. H. Wu, A. Rioux, Food Microbiol. 2010, 27, 179–184.
[22] Y. Han, T. L. Selby, K. K. Schultze, P. E. Nelson, R. H. Linton,
J. Food Prot. 2004, 67, 2450–2455.
[23] I. Popa, E. J. Hanson, E. C. D. Todd, A. C. Schilder, E. T.
Ryser, J. Food Prot. 2007, 70, 2084–2088.
[24] Y. Lee, G. Burgess, M. Rubino, R. Auras, J. Food Prot. 2015,
144, 20–28.
[25] G. Rábai, R. T. Wang, K. Kustin, Int. J. Chem. Kinet. 1993,
25, 53–62.
[26] J. N. Figlar, D. M. Stanbury, J. Phys. Chem. A 1999, 103, 5732–
5741.
[27] A. K. Horváth, I. Nagypál, J. Phys. Chem. A 1998, 102, 7267–
7272.
[28] C. Pan, D. M. Stanbury, J. Phys. Chem. A 2014, 118, 6827–
6831.
Acknowledgments
[29] A. K. Horváth, I. Nagypál, I. R. Epstein, J. Phys. Chem. A
2003, 107, 10063–10068.
This work was supported by the National Natural Science Founda-
tion of China (NSFC) (grant number 51221462), by the Natural
Science Foundation of Jiangsu Province (grant number
BK20131111), the Fundamental Research Funds for the Central
Universities (grant number 2015QNA19), the Priority Academic
Program Development of Jiangsu Higher Education Institutions
(grant number JS-2014-37) and by the Hungarian Research Fund
OTKA (grant number K116591). The authors are grateful for the
financial support of Chinese–Hungarian Cooperative (grant
number K-TÉT-CN-1-2012-0030). Financial support by the Social
Renewable Operational Program (SROP-4.2.2.D-15/1/Konv-2015-
0015, Synthesis of supramolecular systems, examination of their
physico-chemical properties and their utilization for separation and
sensor chemistry project) is also gratefully acknowledged.
[30] G. Cseko, A. K. Horváth, J. Phys. Chem. A 2012, 116, 2911–
˝
2919.
[31] L. Xu, G. Cseko, A. Petz, A. K. Horváth, J. Phys. Chem. A
˝
2014, 118, 1293–1299.
[32] W. Gao, W. Qi, J. Lai, L. Qi, S. Majeed, G. Xu, Chem. Com-
mun. 2015, 51, 1620–1623.
[33] X. L. Armesto, L. M. Canle, M. I. Fernandez, M. V. Garcia,
J. A. Santabella, Tetrahedron 2000, 56, 1103–1109.
[34] D. I. Pattison, M. J. Davies, Chem. Res. Toxicol. 2001, 14,
1453–1464.
[35] A. K. Horváth, I. Nagypál, J. Phys. Chem. A 2006, 110, 4753–
4758.
[36] G. Peintler, I. Nagypál, I. R. Epstein, J. Phys. Chem. 1990, 94,
2954–2958.
[37] IUPAC Stability Constant Database, Royal Society of Chemis-
try, London, 1990–1997.
[38] J. Shao, X. Liu, P. Chen, Q. Wu, X. Zheng, K. Pei, J. Phys.
Chem. A 2014, 118, 3168–3174.
[39] M. J. Pilling, P. W. Seakins, Reaction Kinetics, Oxford Univer-
sity Press, Oxford, UK, 1995.
[40] D. M. Stanbury, J. N. Figlar, Coord. Chem. Rev. 1999, 187, 223–
[1] M. Alamgir, I. R. Epstein, Int. J. Chem. Kinet. 1985, 17, 429–
439.
[2] C. J. Doona, R. Blittersdorf, F. W. Schneider, J. Phys. Chem.
1993, 97, 7258–7263.
[3] C. R. Chinake, R. H. Simoyi, J. Phys. Chem. 1994, 98, 4012–
4019.
232.
[4] I. R. Epstein, K. Kustin, R. H. Simoyi, J. Phys. Chem. 1992,
96, 5852–5856.
[5] Z. Kis, S. V. Makarov, R. Silaghi-Dumitrescu, J. Sulfur Chem.
2010, 31, 27–39.
[6] S. A. Svarovsky, R. H. Simoyi, S. V. Makarov, J. Phys. Chem.
B 2001, 105, 12634–12643.
[7] S. V. Makarov, A. K. Horváth, R. Silaghi-Dumitrescu, Q. Gao,
Chem. Eur. J. 2014, 20, 14164–14176.
[41]
G. Merényi, J. Lind, X. Shen, J. Phys. Chem. 1988, 92, 134–
137.
K. Suzuki, G. Gordon, Inorg. Chem. 1978, 17, 3115–3118.
A. K. Horváth, I. Nagypál, I. R. Epstein, Inorg. Chem. 2006,
45, 9877–9883.
[42]
[43]
[44]
K. E. Huff-Hartz, J. S. Nicoson, L. Wang, D. W. Margerum,
Inorg. Chem. 2003, 42, 78–87.
Eur. J. Inorg. Chem. 2015, 5011–5020
5019
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim