8
012 Inorg. Chem. 2010, 49, 8012–8016
DOI: 10.1021/ic1010902
Interconnected Trimeric, Pentameric, and Hexameric Metallacycles in a Singular
Silver-Adenine Framework
Ashutosh Kumar Mishra and Sandeep Verma*
Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur 208016, India
Received May 31, 2010
This Article describes the synthesis and crystallographic investigation of a silver complex of a modified adenine
derivative bearing a nitrile pendant at the N9 position. All three adenine ring nitrogen atoms coordinated to silver ions,
while the fourth coordination was achieved at the nitrile functionality, thus resulting in the formation of silver-mediated
interconnected trimeric, pentameric, and hexameric metallacyclic rings and helical signatures in two orthogonal
directions.
5
Introduction
adenine analogues are known, including several examples
6
from our group. Our focused investigation of silver-adenine
Nitrogenous nucleobases offer multiple metal binding
possibilities for the generation of novel coordination motifs
and architectures. Such interactions could also be used to
amend classical hydrogen-bonded base-pairing patterns with
the help of metal-mediated base pairing to create unusual
supramolecular architectures. This effect can be further
augmented by the deliberate introduction of metal-binding
functional groups at specified sites, thus leading to interesting
coordination patterns and unique architectures.
interaction has afforded interesting supramolecular motifs
suitable for patterned surface deposition, enhanced lumines-
cence properties, and applications involving fluorescent sensing
1
6,7
for silver ions. We have designed suitably N9-substituted
adenine ligands to achieve hierarchical architectures of incre-
ased complexity (Scheme 1a). In this connection, we recently
reported the formation of a silver metallamacrocyclic hex-
amer, as a result of tetradentate coordination involving
μ-(N1,N3,N7) interaction and an additional coordination via
2
3
9
-Substituted adenine offers three main coordination sites,
6d
an N9 carboxylate group bearing a substituent. To broaden
the scope of this approach, we prepared 3-(6-aminopurin-9-
yl)propionitrile (Scheme 1b) containing an N9-nitrile pen-
dant, and a detailed crystallographic investigation of its silver
complex was performed.
N1, N3, and N7, with N1 and N7 being predominantly used
for metal ion complexation in the mono- or bidentate co-
ordination mode. However, several examples involving the
4
coordination mode that employs all three nitrogen atoms in
*
To whom correspondence should be addressed. E-mail: sverma@iitk.ac.
Experimental Section
in.
(
1
13
1) (a) Sessler, J. L.; Lawrence, C. M.; Jayawickramarajah, J. Chem. Soc.
Hand C NMR spectra were obtained on a JEOL-DELTA2
500 model spectrometer operating at 500 MHz. The chemical
shifts were referenced with respect to tetramethylsilane
Rev. 2007, 36, 314–325. (b) Sivakova, S.; Rowan, S. J. Chem. Soc. Rev. 2005,
4, 9–21.
2) (a) M u€ ller, J. Eur. J. Inorg. Chem. 2008, 24, 3749–3763. (b) Clever,
G. H.; Kaul, C.; Carell, T. Angew. Chem., Int. Ed. 2007, 46, 6226–6236.
3
(
(
(
c) Polonius, F. A.; M €u ller, J. Angew. Chem., Int. Ed. 2007, 46, 5602–5604.
d) Tanaka, K.; Clever, G. H.; Takezawa, Y.; Yamada, Y.; Kaul, C.; Shionoya, M.;
Carell, T. Nat. Nanotechnol. 2006, 1, 190–194. (e) Tanaka, K.; Tengeiji, A.; Kato,
T.; Toyama, N.; Shionoya, M. Science 2003, 299, 1212–1213. (f) Shen, W. Z.;
Lippert, B. J. Inorg. Biochem. 2008, 102, 1134–1140. (g) Zhu, X.; Rusanov, E.;
Kluge, R.; Schmidt, H.; Steinborn, D. Inorg. Chem. 2002, 41, 2667–2671.
(5) (a) Garcı a-Couceiro, U.;
´ ´
a-Ter ꢀa n, J. P.; Castillo, O.; Luque, A.; Garcı
Rom ꢀa n, P.; Lezama, L. Inorg. Chem. 2004, 43, 4549–4551. (b) Fish, R. H.;
Jaouen, G. Organometallics 2003, 22, 2166–2177. (c) Rojas-Gonz ꢀa lez, P. X.;
Casti ꢁn eiras, A.; Gonz ꢀa lez-P ꢁe rez, J. M.; Ch ꢁo quesillo-Lazarte, D.; Nicl ꢁo s-Guti ꢁe rrez, J.
Inorg. Chem. 2002, 41, 6190–6192. (d) Rother, I. B.; Freisinger, E.; Erxleben, A.;
Lippert, B. Inorg. Chim. Acta 2000, 300-302, 339–352.
(6) (a) Purohit, C. S.; Verma, S. J. Am. Chem. Soc. 2006, 128, 400–401.
(b) Purohit, C. S.; Mishra, A. K.; Verma, S. Inorg. Chem. 2007, 46, 8493–8495.
(c) Purohit, C. S.; Verma, S. J. Am. Chem. Soc. 2007, 129, 3488–3489.
(d) Kumar, J.; Verma, S. Inorg. Chem. 2009, 48, 6350–6352.
(h) Amo-Ochoa, P.; Miguel, P. J. S.; Lax, P.; Alonso, I.; Roitzsch, M.; Zamora, F.;
Lippert, B. Angew. Chem., Int. Ed. 2005, 44, 5670–5674. (i) Knobloch, B.; Sigel,
R. K. O.; Lippert, B.; Sigel, H. Angew. Chem., Int. Ed. 2004, 43, 3793–3795.
(
3) (a) Galindo, M. A.; Houlton, A. Inorg. Chim. Acta 2009, 362, 625–633.
(
b) Meiser, C.; Song, B.; Freisinger, E.; Peilert, M.; Sigel, H.; Lippert, B. Chem.—
(7) (a) Verma, S.; Mishra, A. K.; Kumar, J. Acc. Chem. Res. 2010, 43, 79–
91. (b) Mishra, A. K.; Purohit, C. S.; Kumar, J.; Verma, S. Inorg. Chim. Acta
2009, 362, 855–860. (c) Mishra, A. K.; Purohit, C. S.; Verma, S. CrystEngComm
2008, 10, 1296–1298. (d) Pandey, M. D.; Mishra, A. K.; Chandrasekhar, V.;
Verma, S. Inorg. Chem. 2010, 49, 2020–2022. (e) Prajapati, R. K.; Kumar, J.;
Verma, S. Chem. Commun. 2010, 46, 3312–3314. (f) Mishra, A. K.; Verma, S.
Inorg. Chem. 2010, 49, 3691–3693.
Eur. J. 1997, 3, 388–398. (c) Price, C.; Elsegood, M. R. J.; Clegg, W.; Houlton, A.
J. Chem. Soc., Chem. Commun. 1995, 2285–2286. (d) Price, C.; Elsegood,
M. R. J.; Clegg, W.; Rees, N. H.; Houlton, A. Angew. Chem., Int. Ed. 1997, 36,
1
762–1764. (e) Shipman, M. A.; Price, C.; Elsegood, M. R. J.; Clegg, W.;
Houlton, A. Angew. Chem., Int. Ed. 2000, 39, 2360–2362.
4) Lippert, B. Coord. Chem. Rev. 2000, 200-202, 487–516.
(
pubs.acs.org/IC
Published on Web 08/09/2010
r 2010 American Chemical Society