We thank the Department of Chemistry, University of
Iowa. NPR thanks the US National Science Foundation
for funding the purchase of an APEXII diffractometer
(CHE-0420497).
Notes and references
z Crystallographic data. 2ꢀ3CHCl3: C30H18Cl9I3O6, M ¼ 1174.19,
hexagonal, P65, a ¼ 16.3917(3), b ¼ 16.3917(3), c ¼ 24.8007(12) A,
V ¼ 5770.9(3) A3, Z ¼ 6, Dc ¼ 2.027 g cmꢂ3, m ¼ 3.103 mmꢂ1, T (K) ¼
100(2), 178 452 reflections collected, 8874 unique, 7877 observed (I 4
2s(I)) reflections, 403 refined parameters, GOF ¼ 1.061, R1 ¼ 0.0541,
wR2 ¼ 0.1637, Flack x ¼ 0.48(4)—absolute structure could not be
determined, CCDC 688117. 2ꢀ3C5H5N: C42H30I3N3O6, M ¼ 1053.39,
hexagonal, P63/m, a ¼ 16.5590(18), b ¼ 16.5590(18), c ¼ 8.4752(9) A,
V ¼ 2012.6(4) A3, Z ¼ 2, Dc ¼ 1.738 g cmꢂ3, m ¼ 2.380 mmꢂ1, T (K) ¼
190(2), 29 038 reflections collected, 1640 unique, 1367 observed (I 4
2s(I)) reflections, 83 refined parameters, GOF ¼ 1.061, R1 ¼ 0.0470,
wR2 ¼ 0.1383, CCDC 688114. 2ꢀ1.5C6H6: C36H24I3O6, M ¼ 933.25,
hexagonal, P63/m, a ¼ 16.5473(17), b ¼ 16.5473(17), c ¼ 8.4380(9) A,
V ¼ 2000.9(4) A3, Z ¼ 2, Dc ¼ 1.549 g cmꢂ3, m ¼ 2.380 mmꢂ1, T (K) ¼
200(2), 53 859 reflections collected, 1700 unique, 1442 observed (I 4
2s(I)) reflections, 81 refined parameters, GOF ¼ 1.056, R1 ¼ 0.0385,
Fig. 4 View of the asymmetric unit in the close-packed structure of 2
and principal halogen bonding interactions: dIꢀ ꢀ ꢀp ¼ 3.48 A, C–Iꢀ ꢀ ꢀp ¼
174.91, dIꢀ ꢀ ꢀO ¼ 3.23 A, C–Iꢀ ꢀ ꢀO ¼ 142.31.
2.z A view of the two independent molecules in the asymmetric
unit along with their principal halogen bonding interactions is
shown in Fig. 4. Molecules in the asymmetric unit are part of
helical chains that intertwine to achieve close packing. Needle-
shaped crystals of 2 were more robust than their hexagonal
counterparts and DSC analysis revealed a single endothermic
transition corresponding to the melting point of 2 (see ESIw).15
Thus, it appears that the hexagonal crystals obtained from
pyridine and benzene are metastable products which are
eventually supplanted by the thermodynamically favored
close-packed form. Evidently, the combination of halogen
bonding, symmetry, and solvent inclusion in 2ꢀ3C5H5N and
2ꢀ1.5C6H6 is insufficient to maintain an open network, at least
under the crystallization conditions employed (i.e., room
temperature and pressure).
wR2
¼
0.1101, CCDC 688115. 2ꢀnon-solvated: C27H15I3O6,
M ¼ 816.09, monoclinic, P21/c, a ¼ 29.911(3), b ¼ 5.6474(6),
c ¼ 31.534(4) A, b ¼ 103.112(5)1, V ¼ 5187.8(10) A3, Z ¼ 8, Dc
¼
2.090 g cmꢂ3, m ¼ 3.655 mmꢂ1, T (K) ¼ 210(2), 39 978 reflections
collected, 11 892 unique, 8033 observed (I 4 2s(I)) reflections, 649
refined parameters, GOF ¼ 1.008, R1 ¼ 0.0369, wR2 ¼ 0.0761, CCDC
688116.
1 D. Maspoch, D. Ruiz-Molina and J. Veciana, Chem. Soc. Rev.,
2007, 36, 770; G. R. Desiraju, J. Mol. Struct., 2003, 656, 5; A.
Nangia, Curr. Opin. Solid State Mater. Sci., 2001, 5, 115.
2 D. V. Soldatov, J. Chem. Crystallogr., 2006, 36, 747.
3 K. E. Maly, E. Gagnon, T. Maris and J. D. Wuest, J. Am. Chem.
Soc., 2007, 129, 4306.
4 P. Metrangolo, G. Resnati, T. Pilati and S. Biella, Struct. Bonding,
2008, 126, 105.
5 K. E. Riley and K. M. Merz, J. Phys. Chem. A, 2007, 111, 1688; J.
P. M. Lommerse, A. J. Stone, R. Taylor and F. H. Allen, J. Am.
Chem. Soc., 1996, 118, 3108.
Wuest et al. have noted that maximization of both hydrogen
bonding and close-packing is mutually exclusive in certain organic
solids.3 This feature can lead to open crystalline architectures in
systems where hydrogen bonding interactions dominate. Halogen
bonding, though generally recognized as weaker than conven-
tional hydrogen bonding, may be capable of exerting a similar
influence over the crystallization process. In the system described
above, the combination of trigonal host 2 and appropriate solvent
guests produced inclusion complexes with nanometre-sized chan-
nels mediated by mutually reinforcing halogen bonding and
symmetry interactions. Spontaneous conversion of this solid state
network into a solvate-free close-packed structure provides evi-
dence that the open porous framework is thermodynamically less
stable. One can envision, however, that in the presence of stronger
halogen bonding interactions the thermodynamic preference for
close packing may be inverted in favor of porous architectures
(analogous to hydrogen bonded networks). Consequently, as the
phenomenon of halogen bonding becomes better understood, the
engineering of strong and directional halogen bonding interac-
tions should emerge as valuable design elements in the fabrication
of functional organic materials such as porous solids. Addition-
ally, the complementary nature of hydrogen and halogen bonding
has been noted,16 and the design of robust crystalline materials
that exhibit structurally defining and mutually reinforcing hydro-
gen/halogen bonding interactions is an attractive area for future
investigation.
6 Recent studies: S. Muniappan, S. Lipstman and I. Goldberg,
Chem. Commun., 2008, 1777; M. Vartanian, A. C. B. Lucassen,
L. J. W. Shimon and M. E. van der Boom, Cryst. Growth Des.,
2008, 8, 786; P. Metrangolo, F. Meyer, T. Pilati, D. M. Proserpio
and G. Resnati, Cryst. Growth Des., 2008, 8, 654; E. Cariati, A.
Forni, S. Biella, P. Metrangolo, F. Meyer, G. Resnati, S. Righetto,
E. Tordin and R. Ugo, Chem. Commun., 2007, 2590; L. Russo, S.
Biella, M. Lahtinen, R. Liantonio, P. Metrangolo, G. Resnati and
K. Rissanen, CrystEngComm, 2007, 9, 341; P. Metrangolo, F.
Meyer, T. Pilati, D. M. Proserpio and G. Resnati, Chem.–Eur. J.,
2007, 13, 5765.
7 Recent example: P. Metrangolo, F. Meyer, T. Pilati, G. Resnati
and G. Terraneo, Chem. Commun., 2008, 1635.
8 B. K. Saha, R. K. R. Jetti, L. S. Reddy, S. Aitipamula and A.
Nangia, Cryst. Growth Des., 2005, 5, 887.
9 F. C. Pigge, V. R. Vangala and D. C. Swenson, Chem. Commun.,
2006, 2123.
10 C.-H. Lee and T. Yamamoto, Bull. Chem. Soc. Jpn., 2002, 75, 615.
11 A. Bondi, J. Phys. Chem., 1964, 68, 441.
12 Calculated using PLATON: A. L. Spek, PLATON—A multipur-
pose crystallographic tool, University of Utrecht, The Netherlands,
1999.
13 For a similar strategy, see: V. S. S. Kumar, F. C. Pigge and N. P.
Rath, CrystEngComm, 2004, 6, 531.
14 Best fit of the diffraction data for these crystals was obtained using
stoichiometry 2ꢀ1.5C6H6.
15 Thermal analysis of 2ꢀ3C5H5N (DSC/TGA) has also been per-
formed (see ESIw).
¨
16 C. B. Aakeroy, M. Fasulo, N. Schultheiss, J. Desper and C.
Moore, J. Am. Chem. Soc., 2007, 129, 13772.
ꢁc
This journal is The Royal Society of Chemistry 2008
4728 | Chem. Commun., 2008, 4726–4728