Y. Lin, et al.
MolecularCatalysisxxx(xxxx)xxxx
[35] H. Yang, G. Gözaydın, R.R. Nasaruddin, J.R.G. Har, X. Chen, X. Wang, N. Yan,
Toward the shell biorefinery: processing crustacean shell waste using hot water and
[36] X. Chen, H. Yang, Z. Zhong, N. Yan, Base-catalysed, one-step mechanochemical
conversion of chitin and shrimp shells into low molecular weight chitosan, Green
[37] G. Fu, Z. Cui, Y. Chen, Y. Li, Y. Tang, J.B. Goodenough, Ni3Fe-N doped carbon
sheets as a bifunctional electrocatalyst for air cathodes, Adv. Energy Mater. 7
[38] Y. Zhang, L. Lu, S. Zhang, Z. Lv, D. Yang, J. Liu, Y. Chen, X. Tian, H. Jin, W. Song,
Biomass chitosan derived cobalt/nitrogen doped carbon nanotubes for the elec-
trocatalytic oxygen reduction reaction, J. Mater. Chem. A 6 (2018) 5740–5745,
[39] Y. Zhu, W. Sun, W. Chen, T. Cao, Y. Xiong, J. Luo, J. Dong, L. Zheng, J. Zhang,
X. Wang, C. Chen, Q. Peng, D. Wang, Y. Li, Scale-up biomass pathway to cobalt
single-site catalysts anchored on N-doped porous carbon nanobelt with ultrahigh
[40] B. Sahoo, A.-E. Surkus, M.-M. Pohl, J. Radnik, M. Schneider, S. Bachmann,
M. Scalone, K. Junge, M. Beller, A Biomass-derived non-noble cobalt catalyst for
selective hydrodehalogenation of alkyl and (hetero)aryl halides, Angew. Chem. Int.
[41] Y. Cao, B. Zhao, X. Bao, Y. Wang, Fabricating Metal@N-doped carbon catalysts via a
[42] F. Zhang, C. Ma, S. Chen, J. Zhang, Z. Li, X.-M. Zhang, N-doped hierarchical porous
carbon anchored tiny Pd NPs: a mild and efficient quinolines selective hydro-
[43] Y. Gao, X. Chen, J. Zhang, N. Yan, Chitin-derived mesoporous, nitrogen-containing
carbon for heavy-metal removal and styrene epoxidation, ChemPlusChem 80
[44] H. Zhong, L. Duan, P. Ye, X. Li, A. Xu, Q. Peng, a. Synthesis of cobalt–nitrogen-
doped mesoporous carbon from chitosan and its performance for pollutant de-
gradation as Fenton-like catalysts, Res. Chem. Intermediat. 45 (2018) 907–918,
[45] Y.Z. Chen, C. Wang, Z.Y. Wu, Y. Xiong, Q. Xu, S.H. Yu, H.L. Jiang, From bimetallic
metal-organic framework to porous carbon: high surface area and multicomponent
active dopants for excellent electrocatalysis, Adv. Mater. 27 (2015) 5010–5016,
[46] Q. Gu, P. Sautet, C. Michel, Unraveling the role of base and catalyst polarization in
alcohol oxidation on Au and Pt in water, ACS Catal. 8 (2018) 11716–11721,
[47] K. Sun, S. Chen, J. Zhang, G.-P. Lu, C. Cai, Cobalt nanoparticles embedded in N-
doped porous carbon derived from bimetallic zeolitic imidazolate frameworks for
one-pot selective oxidative depolymerization of lignin, ChemCatChem. 11 (2019)
[48] H. Yang, R. Nie, W. Xia, X. Yu, D. Jin, X. Lu, D. Zhou, Q. Xia, Co embedded within
biomass-derived mesoporous N-doped carbon as an acid-resistant and chemose-
lective catalyst for transfer hydrodeoxygenation of biomass with formic acid, Green
[49] J.C. Wang, R.F. Nie, L. Xu, X.L. Lyu, X.Y. Lu, Catalytic transfer hydrogenation of
oleic acid to octadecanol over magnetic recoverable cobalt catalysts, Green Chem.
[50] B. Liu, L. Jin, H. Zheng, H. Yao, Y. Wu, A. Lopes, J. He, Ultrafine Co-based nano-
particle@mesoporous carbon nanospheres toward high-performance super-
[51] B. An, J. Zhang, K. Cheng, P. Ji, C. Wang, W. Lin, Confinement of ultrasmall Cu/
ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis
from catalytic hydrogenation of CO2, J. Am. Chem. Soc. 139 (2017) 3834–3840,
[52] K. Vankudoth, A.H. Padmasri, R. Sarkari, V.K. Velisoju, N. Gutta, N.K. Sathu,
C.N. Rohita, V. Akula, The role of Lewis acid–base pair sites in ZnO-ZnCr2O4 cat-
alysts for cyclization via dehydrogenative condensation of crude glycerol and 1,2-
propanediamine for the synthesis of 2,6-dimethylpyrazine, New J. Chem. 41 (2017)
[12] S. Verma, M.N. Nadagouda, R.S. Varma, Porous nitrogen-enriched carbonaceous
material from marine waste: chitosan-derived carbon nitride catalyst for aerial
oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid, Sci.
[13] S. Siankevich, G. Savoglidis, Z. Fei, G. Laurenczy, D.T.L. Alexander, N. Yan,
P.J. Dyson, A novel platinum nanocatalyst for the oxidation of 5-
Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions, J.
[14] T. Gao, Y. Yin, W. Fang, Q. Cao, Highly dispersed ruthenium nanoparticles on
hydroxyapatite as selective and reusable catalyst for aerobic oxidation of 5-hy-
droxymethylfurfural to 2,5-furandicarboxylic acid under base-free conditions, Mol.
[15] B. Sang, J. Li, X. Tian, F. Yuan, Y. Zhu, Selective aerobic oxidation of the 5-hy-
droxymethylfurfural to 2,5-furandicarboxylic acid over gold nanoparticles sup-
ported on graphitized carbon: study on reaction pathways, Mol. Catal. 470 (2019)
[16] W.-J. Liu, L. Dang, Z. Xu, H.-Q. Yu, S. Jin, G.W. Huber, Electrochemical oxidation of
5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet
[17] D.-H. Nam, B.J. Taitt, K.-S. Choi, Copper-based catalytic anodes to produce 2,5-
furandicarboxylic acid, a biomass-derived alternative to terephthalic acid, ACS
[18] M.J. Kang, H. Park, J. Jegal, S.Y. Hwang, Y.S. Kang, H.G. Cha, Electrocatalysis of 5-
hydroxymethylfurfural at cobalt based spinel catalysts with filamentous na-
noarchitecture in alkaline media, Appl. Catal. B-Environ. 242 (2019) 85–91,
[19] X.-Y. Zhang, M.-H. Zong, N. Li, Whole-cell biocatalytic selective oxidation of 5-
hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid, Green Chem.
[20] E. Taarning, I.S. Nielsen, K. Egeblad, R. Madsen, C.H. Christensen, Chemicals from
renewables: aerobic oxidation of furfural and hydroxymethylfurfural over gold
[21] O. Casanova, S. Iborra, A. Corma, Biomass into chemicals: one pot-base free oxi-
dative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with
[22] F. Menegazzo, T. Fantinel, M. Signoretto, F. Pinna, M. Manzoli, On the process for
furfural and HMF oxidative esterification over Au/ZrO2, J. Catal. 319 (2014)
[23] F. Menegazzo, M. Signoretto, D. Marchese, F. Pinna, M. Manzoli, Structure–activity
relationships of Au/ZrO2 catalysts for 5-hydroxymethylfurfural oxidative ester-
ification: effects of zirconia sulphation on gold dispersion, position and shape, J.
[24] F. Li, X.-L. Li, C. Li, J. Shi, Y. Fu, Aerobic oxidative esterification of 5-hydro-
xymethylfurfural to dimethyl furan-2,5-dicarboxylate by using homogeneous and
heterogeneous PdCoBi/C catalysts under atmospheric oxygen, Green Chem. 20
[25] A. Cho, S. Byun, J.H. Cho, B.M. Kim, AuPd-Fe3O4 nanoparticle-catalyzed synthesis
of Furan-2,5-dimethylcarboxylate from 5-Hydroxymethylfurfural under mild con-
[26] A. Salazar, P. Hünemörder, J. Rabeah, A. Quade, R.V. Jagadeesh, E. Mejia,
Synergetic bimetallic oxidative esterification of 5-hydroxymethylfurfural under
[27] J. Deng, H.J. Song, M.S. Cui, Y.P. Du, Y. Fu, Aerobic oxidation of hydro-
xymethylfurfural and furfural by using heterogeneous CoxOy-N@C catalysts,
[28] Y. Sun, H. Ma, X. Jia, J. Ma, Y. Luo, J. Gao, J. Xu, A high-performance base-metal
approach for the oxidative esterification of 5-Hydroxymethylfurfural,
[29] X. Tong, L. Yu, H. Chen, X. Zhuang, S. Liao, H. Cui, Highly efficient and selective
oxidation of 5-Hydroxymethylfurfural by molecular oxygen in the presence of Cu-
[30] K.-k. Sun, S.-j. Chen, Z.-l. Li, G.-p. Lu, C. Cai, Synthesis of a ZIF-derived hollow
yolk–shell Co@CN catalyst for the oxidative esterification of 5-hydro-
[53] W.R. Leow, W.K.H. Ng, T. Peng, X. Liu, B. Li, W. Shi, Y. Lum, X. Wang, X. Lang,
S. Li, N. Mathews, J.W. Ager, T.C. Sum, H. Hirao, X. Chen, Al2O3 surface com-
plexation for photocatalytic organic transformations, J. Am. Chem. Soc. 139 (2017)
[31] W. Zhong, H. Liu, C. Bai, S. Liao, Y. Li, Base-free oxidation of alcohols to esters at
room temperature and atmospheric conditions using nanoscale Co-based catalysts,
[32] M.N. Kumar, R.A. Muzzarelli, C. Muzzarelli, H. Sashiwa, A.J. Domb, Chitosan
chemistry and pharmaceutical perspectives, Chem. Rev. 104 (2004) 6017–6084,
[54] E. Hayashi, Y. Yamaguchi, K. Kamata, N. Tsunoda, Y. Kumagai, F. Oba, M. Hara,
Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to
2,5-furandicarboxylic acid, J. Am. Chem. Soc. 141 (2019) 890–900, https://doi.
[55] H. Su, K.-X. Zhang, B. Zhang, H.-H. Wang, Q.-Y. Yu, X.-H. Li, M. Antonietti, J.-
S. Chen, Activating cobalt nanoparticles via the Mott–Schottky effect in nitrogen-
rich carbon shells for base-free aerobic oxidation of alcohols to esters, J. Am. Chem.
[33] N. Yan, X. Chen, Sustainability: Don’t waste seafood waste, Nature 524 (2015)
[34] X. Chen, H. Yang, N. Yan, Shell biorefinery: dream or reality? Chem. Eur. J. 22
9