Efficient and Mild Microwave-Assisted Stepwise
Functionalization of Naphthalenediimide with
r-Amino Acids
and porphyrins. In recent years, some derivatives of naphtha-
lenediimide have enjoyed a new role as building blocks in the
synthesis of hetero-oligomers that have the capability to fold,
4
in aqueous solution, into well-defined super-structures. Water-
soluble naphthalenediimide derivatives also strongly interact
Paolo Pengo, G. Dan Panto s¸ , Sijbren Otto,* and
5
with DNA in a threading mode, and this feature has been
Jeremy K. M. Sanders*
6
exploited for the design of molecular probes. As a part of our
ongoing projects, we needed an easy entry to structurally
sophisticated naphthalenediimides having additional functional
groups for postsynthetic modification. The functionalization of
naphthalene tetracarboxylic dianhydride 1 with R-amino acids
was an attractive route because of the large diversity of
functional groups that could be thus introduced. Despite the
UniVersity Chemical Laboratory, UniVersity of Cambridge,
Lensfield Road, Cambridge CB2 1EW, United Kingdom
so230@cam.ac.uk; jkms@cam.ac.uk
ReceiVed June 9, 2006
7
well-documented preparation of phthalimido amino acids, the
simplest derivatives of R-amino acids featuring an aromatic
imide, the literature concerning the structurally related naph-
thalene and pyromellitic diimides is scant. This is due to the
harsh conditions used in the condensation of primary amines
with naphthalene- and pyromellitic tetracarboxylic dianhydrides.
8
The published reaction conditions consist of refluxing the two
components for prolonged periods of time in high boiling
solvents such as DMF, 2-propanol, or pyridine. Although these
8
,9
conditions may be used with free amino acids, they may not
be compatible with sensitive amines or with protected R-amino
acids. We decided to use microwave-induced dielectric heating
to reduce the reaction times and to broaden as much as possible
the span of the reaction conditions.
Microwave dielectric heating proved to be an efficient
method for the one-pot and stepwise syntheses of sym-
metrical and unsymmetrical naphthalenediimide derivatives
of R-amino acids. Acid-labile side chain protecting groups
are stable under the reaction conditions; protection of the
R-carboxylic group is not required. The stepwise condensa-
tion of different amino acids resulted in high yields of
unsymmetrical naphthalenediimides. The reaction proceeds
without racemization and is essentially quantitative.
(3) For selected examples, see (a) Kaiser, G.; Jarrosson, T.; Otto, S.;
Ng, Y.-F.; Bond, A. D.; Sanders, J. K. M. Angew. Chem. 2004, 43, 1959-
1
962. (b) Hamilton, D. G.; Davies, J. E.; Prodi, L.; Sanders, J. K. M.
Chem.-Eur. J. 1998, 4, 608-620. (c) Try, A. C.; Harding, M. M.; Hamilton,
D. G.; Sanders, J. K. M. Chem. Commun. 1998, 723-724. (d) Hamilton,
D. G.; Sanders, J. K. M.; Davies, J. E.; Clegg, W.; Teat, S. J. Chem.
Commun. 1997, 897-898. (e) Vignon, S. A.; Jarrosson, T.; Lijima, T.;
Tseng, H.-R.; Sanders, J. K. M.; Stoddart, J. F. J. Am. Chem. Soc. 2004,
126, 9884-9885. (f) Hansen, J. G.; Feeder, N.; Hamilton, D. G.; Gunter,
M. J.; Becher, J.; Sanders, J. K. M. Org. Lett. 2000, 2, 449-452. (g) Kieran,
A. L.; Pascu, S. I.; Jarrosson, T.; Gunter, M. J.; Sanders, J. K. M. Chem.
Commun. 2005, 1842-1844. (h) Hamilton, D. G.; Feeder, N.; Teat, S. J.;
Sanders, J. K. M. New. J. Chem. 1998, 1019-1021. (i) Hamilton, D. G.;
Prodi, L.; Feeder, N.; Sanders, J. K. M. J. Chem. Soc., Perkin Trans. 1
Electron-deficient and electron-rich subunits are common
structural motifs in the design of supramolecular architectures
including topologically interlocked molecules, molecular de-
1
999, 1057-1065
4) (a) Cubberley, M. S.; Iverson, B. L. J. Am. Chem. Soc. 2001, 123,
560-7563. (b) Gabriel, G. J.; Sorey, S.; Iverson, B. L. J. Am. Chem. Soc.
(
1
vices, and machines. The electron donor-acceptor interaction
7
that arises has been exploited to direct the syntheses of these
supramolecules under either thermodynamic or kinetic control.
In this respect, the electron-deficient naphthalenediimides and
2005, 127, 2637-2640.
(5) (a) Lee, J.; Guelev, V.; Sorey, S.; Hoffman, D. W.; Iverson, B. L. J.
Am. Chem. Soc. 2004, 126, 14036-14042. (b) Guelev, V.; Sorey, S.;
Hoffman, D. W.; Iverson, B. L. J. Am. Chem. Soc. 2002, 124, 2864-2865.
(c) Gianolio, D. A.; Segismundo, J. M.; McLaughlin, L. W. Nucleic Acids
Res. 2000, 28, 2128-2134. (e) Rogers, J. E.; Weiss, S. J.; Kelly, L. A. J.
Am. Chem. Soc. 2000, 122, 427-436. (f) Gianolio, D. A.; McLaughlin, L.
W. Bioorg. Med. Chem. 2001, 9, 2329-2334.
2
pyromelliticdiimides have been extensively employed by others
3
and us for the preparation of catenanes, rotaxanes and pseudo-
rotaxanes in conjunction with electron-rich dialkoxynaphthalenes
(6) (a) Takagi, M. Pure Appl. Chem. 2001, 73, 1573-1577. (b) Mokhir,
(1) For general discussions and examples, see (a) Amabilino, D. B.;
A. A.; Kraemer, R. Bioconj. Chem. 2003, 14, 877-883. (c) Mokhir, A.;
Kr a¨ mer, R.; Wolf, H. J. Am. Chem. Soc. 2004, 126, 6208-6209. (d) Sato,
S.; Kondo, H.; Nojima, T.; Takenada, S. Nucleic Acids Symp. Ser. 2005,
49, 237-238.
Stoddart, J. F. Chem. ReV. 1995, 95, 2725-2828. (b) Raymo, F. M.;
Stoddart, J. F. Chem. ReV. 1999, 97, 11643-1664. (c) Pease, A. R.; Jeppesen,
J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.; Heath, J. R. Acc. Chem. Res.
2
001, 34, 433-444. (d) Balzani, V.; G o´ mez-L o´ pez, M.; Stoddart, J. F. Acc.
(7) For conventional methods in the synthesis of phthalimido amino acids,
see (a) Bose, A. K.; Greer, F.; Price, C. C. J. Org. Chem. 1958, 23, 1335-
1338. (b) Hoffmann, E.; Schiff-Shenhav, H. J. Org. Chem. 1962, 27, 4686-
4688. (c) Billman, J. H.; Harting, W. F. J. Am. Chem. Soc. 1948, 70, 1473-
1474. For microwave assisted methods, see (d) Shendage, D. M.; Fr o¨ hlich,
R.; Haufe, G. Org. Lett. 2004, 6, 3675-3678. (e) Hajipour, A. R.;
Mallakpour, S.; Imanzadeh, G. Ind. J. Chem., Sect. B 2001, 40, 250-251.
(8) For some examples, see refs 2b-f, 3b, 5c, 5e-f. See also Jursic, B.
S.; Patel, P. K. Carbohydr. Res. 2005, 340, 1413-1418.
Chem. Res. 1998, 31, 405-414 (e) Talukdar, P.; Bollot, G.; Mareda, J.;
Sakai, N.; Matile, S. J. Am. Chem. Soc. 2005, 127, 6528-6529.
(2) For selected examples, see (a) Fallon, G. D.; Lee, M. A.-P.; Langford,
S. J.; Nichols, P. J. Org. Lett. 2004, 6, 655-658. (b) Wang, X.-Z.; Li,
X.-Q.; Shao, X.-B.; Zhao, X.; Deng, P.; Jiang, X.-K.; Li, Z.-T.; Chen, Y.-
Q. Chem.-Eur. J. 2003, 9, 2904-2913. (c) Li, X.-Q.; Feng, D.-J.; Jiang,
X.-K.; Li, Z.-T. Tetrahedron 2004, 60, 8275-8284. (d) Gunter, M. J.;
Farquhar, S. M. Org. Biomol. Chem. 2003, 1, 3450-3457. (e) Johnstone,
K. D.; Yamaguchi, K.; Gunter, M. J. Org. Biomol. Chem. 2005, 3, 3008-
(9) Abraham, B.; McMasters, S.; Mullan, M. A.; Kelly, L. A. J. Am.
Chem. Soc. 2004, 126, 4293-4300.
3
017. (f) Gunter, M. J. Eur. J. Org. Chem. 2004, 8, 1655-1673.
1
0.1021/jo061195h CCC: $33.50 © 2006 American Chemical Society
Published on Web 07/26/2006
J. Org. Chem. 2006, 71, 7063-7066
7063