Organometallics
Article
Structural Analysis of Biarylphosphine Ligands in Arylpalladium
Bromide and Malonate Complexes. Organometallics 2017, 36, 129−
135. (h) Yadav, M. R.; Nagaoka, M.; Kashihara, M.; Zhong, R.-L.;
Miyazaki, T.; Sakaki, S.; Nakao, Y. The Suzuki−Miyaura Coupling of
Nitroarenes. J. Am. Chem. Soc. 2017, 139, 9423−9426.
(8) Arrechea, P. L.; Buchwald, S. L. Biaryl Phosphine Based Pd(II)
Amido Complexes: The Effect of Ligand Structure on Reductive
Elimination. J. Am. Chem. Soc. 2016, 138, 12486−12493.
(9) Leroux, F. R.; Bonnafoux, L.; Heiss, C.; Colobert, F.; Lanfranchi,
D. A. A Practical Transition Metal-Free Aryl-Aryl Coupling Method:
Arynes as Key Intermediates. Adv. Synth. Catal. 2007, 349, 2705−
2713.
Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.
Author Contributions
‡M.P.-I. and R.I. contributed equally.
Notes
The authors declare no competing financial interest.
(10) Olsen, E. P. K.; Arrechea, P. L.; Buchwald, S. L. Mechanistic
Insight Leads to a Ligand Which Facilitates the Palladium-Catalyzed
Formation of 2-(Hetero)Arylaminooxazoles and 4-(Hetero)-
Arylaminothiazoles. Angew. Chem., Int. Ed. 2017, 56, 10569−10572.
(11) Milne, J. E.; Buchwald, S. L. An Extremely Active Catalyst for
the Negishi Cross-Coupling Reaction. J. Am. Chem. Soc. 2004, 126,
13028−13032.
(12) Mak, A. M.; Jong, H.; Robins, E. G.; Sullivan, M. B.; Lim, Y. H.;
Yang, Y.; Johannes, C. W. Mechanistic Insights and Implications of
Dearomative Rearrangement in Copper-Free Sonogashira Cross-
Coupling Catalyzed by Pd-Cy*Phine. Organometallics 2016, 35,
1036−1045.
ACKNOWLEDGMENTS
Financial support by the Spanish MINECO (CTQ2016-
80913-P) and the Junta de Castilla y Leon (JCyL VA051P17,
VA062G18 and M.P.-I. predoctoral grant) is gratefully
acknowledged. This paper is dedicated to Prof. Miguel A.
Ciriano (University of Zaragoza) on the occasion of his 70th
birthday.
■
́
REFERENCES
■
(1) Gioria, E.; delPozo, J.; Martínez-Ilarduya, J. M.; Espinet, P.
Promoting Difficult Carbon−Carbon Couplings: Which Ligand Does
Best? Angew. Chem., Int. Ed. 2016, 55, 13276−13280.
(2) delPozo, J.; Gioria, E.; Espinet, P. Olefin Insertion Versus Cross-
Coupling in trans-[Pd(Ar)X(AsPh3)2] Complexes (X = I, F, CF3)
Treated with a Phosphine-EWOlefin Ligand to Induce Ar−X
Coupling. Organometallics 2017, 36, 2884−2890.
(3) Gioria, E.; Martínez-Ilarduya, J. M.; García-Cuadrado, D.;
Miguel, J. A.; Genov, M.; Espinet, P. Phosphines with Tethered
Electron-Withdrawing Olefins as Ligands for Efficient Pd-Catalyzed
Aryl-Alkyl Coupling. Organometallics 2013, 32, 4255−4261.
(4) Williams, D. B. G.; Shaw, M. L. P-Alkene Bidentate Ligands: An
Unusual Ligand Effect in Pd-Catalysed Suzuki Reactions. Tetrahedron
2007, 63, 1624−1629.
(5) Luo, X.; Zhang, H.; Duan, H.; Liu, Q.; Zhu, L.; Zhang, T.; Lei,
A. Superior Effect of a π-Acceptor Ligand (Phosphine-Electron-
Deficient Olefin Ligand) in the Negishi Coupling Involving Alkylzinc
Reagents. Org. Lett. 2007, 9, 4571−4574.
(13) Baba, K.; Tobisu, M.; Chatani, N. Palladium-Catalyzed Direct
Synthesis of Phosphole Derivatives from Triarylphosphines through
Cleavage of Carbon-Hydrogen and Carbon-Phosphorus Bonds.
Angew. Chem., Int. Ed. 2013, 52, 11892−11895.
́
(14) (a) Perez-Rodríguez, M.; Braga, A. A. C.; García-Melchor, M.;
́
Perez-Temprano, M. H.; Casares, J. A.; Ujaque, G.; de Lera, A. R.;
́
Alvarez, R.; Maseras, F.; Espinet, P. C-C Reductive Elimination in
Palladium Complexes, and the Role of Coupling Additives. A DFT
Study Supported by Experiment. J. Am. Chem. Soc. 2009, 131, 3650−
3657. (b) Ozawa, F. Reductive elimination. Fundamentals of Molecular
Catalysis 2003, 3, 479. (c) Gillie, A.; Stille, J. K. Mechanisms of 1,1-
Reductive Elimination from Palladium. J. Am. Chem. Soc. 1980, 102,
4933−4941. (d) Ozawa, F.; Ito, T.; Yamamoto, A. Mechanism of
thermal decomposition of trans-diethylbis(tertiary phosphine)-
palladium(II). Steric effects of tertiary phosphine ligands on the
stability of diethylpalladium complexes. J. Am. Chem. Soc. 1980, 102,
6457−6463.
(15) Choukroun, R.; Lorber, C.; Lepetit, C.; Donnadieu, B.
Reactivity of [Cp2Ti(CO)2] and B(C6F5)3: Formation of the
Acylborane Complexes [Cp2Ti(CO)(η2-OCB(C6F5)3)] and [Cp2Ti-
(THF)(η2-OCB(C6F5)3)]. Organometallics 2003, 22, 1995−1997.
(16) Mehta, M.; Garcia de la Arada, I.; Perez, M.; Porwal, D.;
Oestreich, M.; Stephan, D. W. Metal-Free Phosphine Oxide
Reductions Catalyzed by B(C6F5)3 and Electrophilic Fluorophospho-
nium Cations. Organometallics 2016, 35, 1030−1035.
(6) Tuxworth, L.; Baiget, L.; Phanopoulos, A.; Metters, O. J.;
Batsanov, A. S.; Fox, M. A.; Howard, J. A. K.; Dyer, P. W. Phosphine-
Alkene Ligand-Mediated Alkyl-Alkyl and Alkyl-Halide Elimination
Processes from Palladium(II). Chem. Commun. 2012, 48, 10413−
10415.
(7) (a) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J.; Buchwald, S.
L. Simple, Efficient Catalyst System for the Palladium-Catalyzed
Amination of Aryl Chlorides, Bromides, and Triflates. J. Org. Chem.
2000, 65, 1158−1174. (b) Christmann, U.; Vilar, R.; White, A. J. P.;
Williams, D. J. Synthesis of Two Novel Dinuclear Palladium(I)
Complexes and Studies of Their Catalytic Activity in Amination
Reactions. Chem. Commun. 2004, 4, 1294−1295. (c) Christmann, U.;
Pantazis, D. A.; Benet-Buchholz, J.; McGrady, J. E.; Maseras, F.; Vilar,
R. Experimental and Theoretical Investigations of New Dinuclear
Palladium Complexes as Precatalysts for the Amination of Aryl
Chlorides. J. Am. Chem. Soc. 2006, 128, 6376−6390. (d) Fors, B. P.;
Watson, D. A.; Biscoe, M. R.; Buchwald, S. L. A Highly Active
Catalyst for Pd-Catalyzed Amination Reactions. J. Am. Chem. Soc.
2008, 130, 13552−13554. (e) Milner, P. J.; Maimone, T. J.; Su, M.;
(17) Gioria, E.; Martínez-Ilarduya, J. M.; García-Cuadrado, D.;
Miguel, J. A.; Genov, M.; Espinet, P. Phosphines with Tethered
Electron-Withdrawing Olefins as Ligands for Efficient Pd-Catalyzed
Aryl-Alkyl Coupling. Organometallics 2013, 32, 4255−4261.
(18) Murphy-Jolly, M. B.; Lewis, L. C.; Caffyn, A. J. M. The
Synthesis of Tris(Perfluoroalkyl)Phosphines. Chem. Commun. 2005,
4479−4480.
(19) Hierso, J. C. Indirect Nonbonded Nuclear Spin-Spin Coupling:
A Guide for the Recognition and Understanding of “through-Space”
NMR J Constants in Small Organic, Organometallic, and Coordina-
tion Compounds. Chem. Rev. 2014, 114, 4838−4867.
Chen, J.; Muller, P.; Buchwald, S. L. Investigating the Dearomative
̈
(20) Contreras, R. H.; Llorente, T.; Ducati, L. C.; Tormena, C. F.
Rearrangement of Biaryl Phosphine-Ligated Pd(II) Complexes. J. Am.
Chem. Soc. 2012, 134, 19922−19934. For recent examples, see:
(f) DeAngelis, A. J.; Gildner, P. G.; Chow, R.; Colacot, T. J.
Generating Active “L-Pd(0)” via Neutral or Cationic π-Allylpalladium
Complexes Featuring Biaryl/Bipyrazolylphosphines: Synthetic, Mech-
anistic, and Structure−Activity Studies in Challenging Cross-Coupling
Reactions. J. Org. Chem. 2015, 80, 6794−6813. (g) Goutierre, A.-S.;
Trinh, H. V.; Larini, P.; Jazzar, R.; Baudoin, O. Comparative
Revisiting NMR Through-Space J Spin−Spin Coupling Constants
FF
for Getting Insight into Proximate F—F Interactions. J. Phys. Chem. A
2014, 118, 5068−5075.
(21) The through-space coupling between fluorine nuclei is very
common. See refs 19 and 20.
(22) Aullon, G.; Ujaque, G.; Lledos, A.; Alvarez, S.; Alemany, P. To
Bend or Not To Bend: Dilemma of the Edge-Sharing Binuclear
G
Organometallics XXXX, XXX, XXX−XXX