RSC Advances
Paper
¨
¨
¨
temperature (half-life of 43 min). These data agreed with our 12 R. Apak, S. Gorinstein, V. Bohm, K. M. Schaich, M. Ozyurek
¨
¨
results and explained that the low magnitude of r was caused by
the stability of the intermediate radical. A relatively small r
and K. Guçlu, Pure Appl. Chem., 2013, 85(5), 957–998, (IUPAC
Technical Report).
value reects high 6-chromanol derivative reactivity. Therefore, 13 W. Brand-Williams, M. E. Cuvelier and C. Berset, LWT–Food
the radical reactions of the ortho-monosubstituted and disub- Sci. Technol., 1994, 28(1), 25–30.
stituted 6-chromanols are largely dependent on the stabilities of 14 M. Lucarini and G. F. Pedulli, Chem. Soc. Rev., 2010, 39(6),
the intermediates to increase radical scavenging activity. 2106–2119.
There is a possibility that radical scavengers can be devel- 15 Y. Kadoma, T. Atsumi, N. Okada, M. Ishihara, I. Yokoe and
oped as anti-inammatory agents and disease chemopreventive S. Fujisawa, Molecules, 2007, 12(2), 130–138.
agents.45 As our 6-chromanols showed positive radical scav- 16 M. C. Foti, C. Daquino, I. D. Mackie, G. A. DiLabio and
enging activities, a protecting group will be introduced into a K. U. Ingold, J. Org. Chem., 2008, 73(23), 9270–9282.
phenolic hydroxyl group and/or amino groups, and then their 17 N. Nenadis, L. F. Wang, M. Z. Tsimidou and H. Y. Zhang, J.
cytotoxicity will be evaluated.
Agric. Food Chem., 2005, 53(2), 295–299.
18 S. Fujisawa, M. Ishihara, Y. Murakami, T. Atsumi, Y. Kadoma
and I. Yokoe, In Vivo, 2007, 21(2), 181–188.
19 P. Mulder, H. G. Korth, D. A. Pratt, G. A. DiLabio,
L. Valgimigli, G. F. Pedulli and K. U. Ingold, J. Phys. Chem.
A, 2005, 109(11), 2647–2655.
Conclusion
For a series of substituted 6-chromanols, amino-6-chromanols
substituted at ortho positions demonstrated the highest radical
scavenging activities. Additionally, Hammett or Ta sigma 20 R. Bosque and J. Sales, J. Chem. Inf. Comput. Sci., 2003, 43(2),
constants can be used to predict the radical scavenging activi- 637–642.
ties of substituted 6-chromanols to design new antioxidants 21 C. X. Xue, R. S. Zhang, H. X. Liu, X. J. Yao, M. C. Liu, Z. D.Hu
based on chromanols.
and B. T. Fan, J. Chem. Inf. Comput. Sci., 2004, 44(2), 669–677.
22 M. Lucarini, P. Pedrielli, G. F. Pedulli, S. Cabiddu and
C. Fattuoni, J. Org. Chem., 1996, 61(26), 9259–9263.
23 D. J. V. A. dos Santos, A. S. Newton, R. Bernardino and
R. C. Guedes, Int. J. Quantum Chem., 2008, 108(4), 754–761.
24 J. S. Wright, E. R. Johnson and G. A. DiLabio, J. Am. Chem.
Soc., 2001, 123(6), 1173–1183.
References
1 J. M. Zingg and A. Azzi, Curr. Med. Chem., 2004, 11(9), 1113–
1133.
´
2 R. Brigelius-Flohe, Nutr. Res. Rev., 2006, 19(2), 174–186.
3 E. Niki and M. G. Traber, Ann. Nutr. Metab., 2012, 61(3), 207– 25 Y. Luo, Int. J. Chem. Kinet., 2002, 34(8), 453–466.
212.
26 J. S. Wright, D. J. Carpenter, D. J. McKay and K. U. Ingold, J.
Am. Chem. Soc., 1997, 119(18), 4245–4252.
27 M. Naja, K. H. Mood, M. Zahedi and E. Klein, Comput.
Theor. Chem., 2011, 969(1–3), 1–12.
28 J. L. G. Nilsson, H. Sievertsson and H. Selander, Acta Chem.
Scand., 1968, 22, 3160–3170.
4 V. D. Kancheva and O. T. Kasaikina, Curr. Med. Chem., 2013,
20(37), 4784–4805.
5 G. W. Burton and K. U. Ingold, Acc. Chem. Res., 1986, 19, 194–
201.
6 E. Niki and N. Noguchi, Acc. Chem. Res., 2004, 37, 45–51.
7 J. Tsuchiya, E. Niki and Y. Kamiya, Bull. Chem. Soc. Jpn., 1983, 29 K. Inami, Y. Iizuka, M. Furukawa, I. Nakanishi, K. Ohkubo,
56, 229–232.
K. Fukuhara, S. Fukuzumi and M. Mochizuki, Bioorg. Med.
Chem., 2012, 20(13), 4049–4055.
8 (a) L. R. C. Barclay, M. R. Vinqvist, K. Mukai, S. Itoh and
H. Motimoto, J. Org. Chem., 1993, 58, 7416–7420; (b) 30 K. Inami, I. Nakanishi, M. Morita, M. Furukawa, K. Ohkubo,
K. Mukai, Y. Kageyama, T. Ishida and K. Fukuda, J. Org.
Chem., 1989, 54, 552–556; (c) W. Gregor, G. Grabner,
S. Fukuzumi and M. Mochizuki, RSC Adv., 2012, 2(33),
12714–12717.
C. Adelwohrer, T. Rosenau and L. Gille, J. Org. Chem., 2005, 31 N. Gotoh, K. Shimizu, E. Komuro, J. Tsuchiya, N. Noguchi
70, 3472–3483; (d) G. W. Burton, T. Doba, E. J. Gabe,
and E. Niki, Biochim. Biophys. Acta, 1992, 1128(2–3), 147–154.
L. Hughes, F. L. Lee, L. Prasad and K. U. Ingold, J. Am. 32 P. S. Marrs, J. Chem. Educ., 2001, 78(4), 527–529.
Chem. Soc., 1985, 107, 7053–7065.
9 (a) D. Shanks, R. Amorai, M. Fumo, F. Pedulli, L. Valgimigli
33 C. Hansch, A. Leo and R. W. Ta, Chem. Rev., 1991, 91(2),
165–195.
and L. Engman, J. Org. Chem., 2006, 71, 1033–1038; (b) N. Al- 34 G. Gokel, Deans Handbook of Organic Chemistry, 2nd edn,
Maharik, L. Engman, J. Malmstrom and C. H. Schiesser, J.
Org. Chem., 2001, 66, 6286–6290.
10 (a) V. N. Povalishev, G. I. Polozov and O. I. Shadyro, Bioorg.
McGraw-Hill, New York, 2004, Section 7.
35 B. A. Hathaway and B. Olesen, J. Chem. Educ., 1993, 70(11),
953–955.
ˇ
´
Med. Chem. Lett., 2006, 16, 1236–1239; (b) R. Amorati, 36 E. Anouar, C. A. Calliste, P. Kosinova, F. D. Meo, J. L. Duroux,
A. Cavalli, M. Fumo, M. Masetti, S. Menichetti, C. Pagliuca,
G. F. Pedulli and C. Viglianisi, Chem.–Eur. J., 2007, 13(29),
8223–8230.
Y. Champavier, K. Marakchi and P. Trouillas, J. Phys. Chem.
A, 2009, 113(50), 13881–13891.
37 I. Nakanishi, T. Kawashima, K. Ohkubo, H. Kanazawa,
K. Inami, M. Mochizuki, K. Fukuhara, H. Okuda, T. Ozawa,
S. Itoh, S. Fukuzumi and N. Ikota, Org. Biomol. Chem.,
2005, 3(4), 549–704.
¨
11 L. Bamonti, T. Hosoya, K. F. Pirker, S. Bohmdorfer,
F. Mazzini, F. Galli, T. Netscher, T. Rosenau and L. Gille,
Bioorg. Med. Chem., 2013, 21(17), 5039–5046.
43888 | RSC Adv., 2014, 4, 43882–43889
This journal is © The Royal Society of Chemistry 2014