Journal of the American Chemical Society
Page 4 of 6
application of this transformation is currently undergoing in our
1
2
laboratory.
Scheme 6. Plausible Reaction Mechanism
3
4
5
6
7
8
9
ASSOCIATED CONTENT
Supporting Information
Experimental details including characterization data, copies of 1H
and 13C NMR spectra. This material is available free of charge via
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We gratefully acknowledge NSF CHEꢀ1350541 and Indiana Uniꢀ
versityꢀPurdue University Indianapolis for financial support.
To further broaden the synthetic utility of this process, ringꢀ
opening reactions of succinimide 4j were carried out (Scheme
7).4d Treatment of 4j under acidic conditions provided the hydroꢀ
lyzed product 1ꢀ(carboxymethyl)cyclopentaneꢀ1ꢀcarboxylic acid
(14) in 85% isolated yield. On the other hand, selective alcoholyꢀ
sis of 4j occurred with NaOMe in MeOH at room temperature,
REFERENCES
(1) For selected recent reviews, see: (a) Daugulis, O.; Do, H.ꢀQ.; Shaꢀ
bashov, D. Acc. Chem. Res. 2009, 42, 1074. (b) Chen, X.; Engle, K. M.;
Wang, D.ꢀH.; Yu, J.ꢀQ. Angew. Chem., Int. Ed. 2009, 48, 5094. (c) Wasa,
M.; Engle, K. M.; Yu, J.ꢀQ. Isr. J. Chem. 2010, 50, 605. (d) Colby, D. A.;
Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (e) Lyons, T.
W. Sanford, M. S. Chem. Rev. 2010, 110, 1147. (f) Jazzar, R.; Hitce, J.;
Renaudat, A.; SofackꢀKreutzer, J.; Baudoin, O. Chem. Eur. J. 2010, 16,
2654. (g) Ackermann, L. Chem. Commun. 2010, 46, 4866. (h) Li, H.; Li,
B.ꢀJ.; Shi, Z.ꢀJ. Catal. Sci. Technol. 2011, 1, 191. (i) Yoshikai, N. Synlett
2011, 1047. (j) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
(k) Ackermann, L. Chem. Rev. 2011, 111, 1315. (l) Davis, H. M. L.; Du
Bois, J.; Yu, J.ꢀQ. Chem. Soc. Rev. 2011, 40, 1855. (m) Gutekunst,W. R.;
Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976. (n) Hartwig, J. F. Chem.
Soc. Rev. 2011, 40, 1992. (o) Newhouse,T.; Baran, P. S. Angew. Chem.
Int. Ed. 2011, 50, 3362. (p) Baudoin, O. Chem. Soc. Rev. 2011, 40, 4902.
(q) White, M. C. Science 2012, 335, 807. (r) Colby, D. A.; Tsai, A. S.;
Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814. (s) Arockꢀ
iam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. (t)
Yamaguchi, J. A. D.; Itami, K. Angew. Chem. Int. Ed. 2012, 51, 8960. (u)
Collins, K.; Glorius, F. Nat. Chem. 2013, 5, 597. (v) Engle, K. M.; Yu, J.ꢀ
Q. J. Org. Chem. 2013, 78, 8927.
(2) For selected recent reviews, see: (a) Gabriele, B.; Mancuso, R.; Saꢀ
lerno, G. Eur. J. Org. Chem. 2012, 6825. (b) Liu, Q.; Zhang, H.; Lei, A.
Angew. Chem., Int. Ed. 2011, 50, 10788.
(3) For selected recent reviews, see: (a) Brennführer, A.; Neumann, H.;
Beller, M. ChemCatChem 2009, 1, 28. (b) Colby, Denise A.; Bergman,
Robert G.; Ellman, Jonathan A. Chem. Rev. 2010, 110, 624. (c) Wu, X.ꢀF.;
Neumann, H.; Beller, M. ChemSusChem. 2013, 6, 229. (d) Wu, X.ꢀF.;
Neumann, H.; Beller, M. Chem. Rev. 2013, 113, 1. (e) Gao, K.; Yoshikai,
N. Acc. Chem. Res. 2014, 47, 1208.
affording
methyl
2ꢀ(1ꢀ((2ꢀ(pyridinꢀ2ꢀyl)propanꢀ2ꢀ
yl)carbamoyl)cyclopentyl)acetate (15) in 74% yield. Furthermore,
the quinolinꢀ8ꢀyl moiety of 2l could also be readily removed by
treatment with ammonia, affording the corresponding naphꢀ
thalimide derivative 16.12
Scheme 7. Derivatization of Succinimides
In summary, a direct carbonylation of C−H bonds of aromatic
or aliphatic amides was developed through nickel/copper synerꢀ
gistic catalysis under atmospheric oxygen with DMF as the CO
source. The sp2 C−H bond functionalization process was featured
with high regioselectivity and a good compatibility with a broad
range of functional groups. The sp3 C−H bond functionalization
process showed a predominant preference for the αꢀmethyl groups
over the αꢀmethylene and βꢀ or γꢀ methyl groups. Furthermore, the
preference of functionalizing the sp3 C−H bond of the αꢀmethyl
group over the sp2 C−H bond of the αꢀphenyl group was also
observed. Mechanistic studies suggested that this reaction is perꢀ
formed via nickel/copper synergistic catalysis with the nickel
species initiating the C−H activation of an amide to generate a
nucleophile and DMF providing an electrophile by the copper
species. Interestingly, it was found that C−H bond cleavage of
aromatic amides is a reversible step while C−H bond cleavage of
aliphatic amides is the rateꢀlimiting step, indicating that C−H
activation on sp3 carbons is a more challenging process compared
with sp2 carbons. The detailed mechanistic study and potential
(4) For selected examples, see: (a) Fujiwara, Y.; Takaki, K.; Watanabe,
J.; Uchida, Y.; Taniguchi, H. Chem. Lett. 1989, 1687. (b) Sakakura, T.;
Sodeyama, T.; Sasaki, K.; Wada, K.; Tanaka, M. J. Am. Chem. Soc. 1990,
112, 7221. (c) Chatani, N.; Asaumi, T.; Ikeda, T.; Yorimitsu, S.; Ishii, Y.a;
Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2000, 122, 12882. (d) Yoo, E.
J.; Wasa, M.; Yu, J.ꢀQ. J. Am. Chem. Soc. 2010, 132, 17378. (e) Hasegaꢀ
wa, N.; Charra, V.; Inoue, S.; Fukumoto, Y.; Chatani, N. J. Am. Chem.
Soc. 2011, 133, 8070. (f) Xie, P.; Xie, Y.ꢀJ.; Qian, B.; Zhou, H.; Xia, C.ꢀ
G.; Huang, H.ꢀM. J. Am. Chem. Soc. 2012, 134, 9902. (g) Hasegawa, N.;
Shibata, K.; Charra, V.; Inoue, S.; Fukumoto, Y.; Chatani, N. Tetrahe-
dron 2013, 69, 4466.
(5) For selected recent reviews, see: (a) Li, C.ꢀJ. Acc. Chem. Res. 2009,
42, 335. (b) Yoo, W.ꢀJ.; Li, C.ꢀJ. Top. Curr. Chem. 2010, 292, 281. (c)
Scheuermann, C. J. Chem. Asian J. 2010, 5, 436. (d) Yeung, C. S.; Dong,
V. M. Chem. Rev. 2011, 111, 1215. (e) Liu, C.; Zhang, H.; Shi, W.; Lei,
ACS Paragon Plus Environment