10.1002/anie.201802610
Angewandte Chemie International Edition
COMMUNICATION
[4]
For reviews: a) R. Eckermann, T. Gaich, Synthesis 2013, 45, 2813–2823;
b) J. M. Smith, J. Moreno, B. W. Boal, N. K. Garg, Angew. Chem. 2015,
127, 410–422; Angew. Chem. Int. Ed. 2015, 54, 400–412; c) G. L. Adams,
A. B. Smith, in Alkaloids Chem. Biol. (Ed.: H.-J. Knölker), Academic
Press, 2016, pp. 171–257; d) C. Wang, S. Zhang, Y. Wang, S.-H. Huang,
R. Hong, Org. Chem. Front. 2018, 5, 447–452. For selected total
syntheses, vincorine: e) M. Zhang, X. Huang, L. Shen, Y. Qin, J. Am.
Chem. Soc. 2009, 131, 6013–6020; f) B. D. Horning, D. W. C. MacMillan,
J. Am. Chem. Soc. 2013, 135, 6442–6445; aspidophylline A: g) L. Zu, B.
W. Boal, N. K. Garg, J. Am. Chem. Soc. 2011, 133, 8877–8879; h) W.
Ren, Q. Wang, J. Zhu, Angew. Chem. 2014, 126, 1849–1852; Angew.
Chem. Int. Ed. 2014, 53, 1818–1821; i) T. Wang, X. Duan, H. Zhao, S.
Zhai, C. Tao, H. Wang, Y. Li, B. Cheng, H. Zhai, Org. Lett. 2017, 19,
1650–1653; picrinine: j) J. M. Smith, J. Moreno, B. W. Boal, N. K. Garg,
J. Am. Chem. Soc. 2014, 136, 4504–4507; aspidodasycarpine and
lonicerine: k) Y. Li, S. Zhu, J. Li, A. Li, J. Am. Chem. Soc. 2016, 138,
3982–3985; calophyline: l) G. Li, X. Xie, L. Zu, Angew. Chem. 2016, 128,
10639–10642; Angew. Chem. Int. Ed. 2016, 55, 10483–10486;
scholarisine A or K: m) G. L. Adams, P. J. Carroll, A. B. Smith, J. Am.
Chem. Soc. 2012, 134, 4037–4040; n) M. W. Smith, S. A. Snyder, J. Am.
Chem. Soc. 2013, 135, 12964–12967; o) D. Wang, M. Hou, Y. Ji, S. Gao,
Org. Lett. 2017, 19, 1922–1925; arboridinine: p) P. Gan, J. Pitzen, P. Qu,
S. A. Snyder, J. Am. Chem. Soc. 2018, 140, 919–925; strictamine: q) J.
Moreno, E. Picazo, L. A. Morrill, J. M. Smith, N. K. Garg, J. Am. Chem.
Soc. 2016, 138, 1162–1165; r) W. Ren, Q. Wang, J. Zhu, Angew. Chem.
2016, 128, 3561–3564; Angew. Chem. Int. Ed. 2016, 55, 3500–3503; s)
D. Nishiyama, A. Ohara, H. Chiba, H. Kumagai, S. Oishi, N. Fujii, H.
Ohno, Org. Lett. 2016, 18, 1670–1673; t) R. Eckermann, M. Breunig, T.
Gaich, Chem. Commun. 2016, 52, 11363–11365; u) M. W. Smith, Z.
Zhou, A. X. Gao, T. Shimbayashi, S. A. Snyder, Org. Lett. 2017, 19,
1004–1007; v) X. Xie, B. Wei, G. Li, L. Zu, Org. Lett. 2017, 19, 5430–
5433; w) T. Xiao, Z.-T. Chen, L.-F. Deng, D. Zhang, X.-Y. Liu, H. Song,
Y. Qin, Chem. Commun. 2017, 53, 12665–12667.
[9]
For enantioselective total syntheses of geissoschizine or 9: a) C.
Bohlmann, R. Bohlmann, E. G. Rivera, C. Vogel, M. D. Manandhar, E.
Winterfeldt, Liebigs Ann. Chem. 1985, 1985, 1752–1763; b) L. E.
Overman, A. J. Robichaud, J. Am. Chem. Soc. 1989, 111, 300–308; c)
S. F. Martin, K. X. Chen, C. T. Eary, Org. Lett. 1999, 1, 79–82; d) S. Yu,
O. M. Berner, J. M. Cook, J. Am. Chem. Soc. 2000, 122, 7827–7828; e)
L. Li, P. Aibibula, Q. Jia, Y. Jia, Org. Lett. 2017, 19, 2642–2645; f) Y.
Zheng, K. Wei, Y.-R. Yang, Org. Lett. 2017, 19, 6460–6462; g) X. Wang,
D. Xia, W. Qin, R. Zhou, X. Zhou, Q. Zhou, W. Liu, X. Dai, H. Wang, S.
Wang, L. Tan, D. Zhang, H. Song, X.-Y. Liu, Y. Qin, Chem 2017, 2, 803–
816.
[10] J. Vercauteren, C. Lavaud, J. Levy, G. Massiot, J. Org. Chem. 1984, 49,
2278–2279.
[11] The introduction of a substituent such as a PMB on the nitrogen of the
indole of 12 (or 17) could also allow to improve the diastereoselectivity in
favour of the cis isomer, see ref 9f. However, the introduction and
removal of this substituent does not make this strategy more efficient.
[12] S. F. Martin, C. W. Clark, J. W. Corbett, J. Org. Chem. 1995, 60, 3236–
3242.
[13] For instance, oxidative cyclization of 9 with LiHMDS/I2 or KHMDS/I2 failed
(ref 5). We were also unable to achieve the alpha-chlorination of the ester
of 9 in presence of the NH-indole.
[14] K. M. Brummond, K. D. Gesenberg, Tetrahedron Lett. 1999, 40, 2231–
2234.
[15] An excess of the chlorinating agent needs to be used to trap rapidly the
enolate of 21, before the latter could deprotonate the formed -
monochlorolactam 22, which leads to the formation of the corresponding
undesired -bischlorolactam, see the supporting information.
[16] R. L. Bentley, H. Suschitzky, J. Chem. Soc. Perkin 1, 1976, 1725–1734.
[17] For a minireview on the direct -amination of carbonyls with nitrogen
nucleophiles: A. de la Torre, V. Tona, N. Maulide, Angew. Chem. 2017,
129, 12588–12596; Angew. Chem. Int. Ed. 2017, 56, 12416–12423.
[18] With only 1.1 equiv. of KHMDS, 23% of (–)-23 were obtained, while 23
was not formed in the absence of base or with LiHMDS (Ma’s conditions)
instead of KHMDS.
[5]
[6]
Vincorine: a) W. Zi, W. Xie, D. Ma, J. Am. Chem. Soc. 2012, 134, 9126–
9129; aspidophylline A: b) M. Teng, W. Zi, D. Ma, Angew. Chem. 2014,
126, 1845–1848; Angew. Chem. Int. Ed. 2014, 53, 1814–1817. For an
account on the indole-enolate oxidative coupling: c) W. Zi, Z. Zuo, D. Ma,
Acc. Chem. Res. 2015, 48, 702–711.
Hemisynthesis of 16-epi-pleiocarpamine: a) S. Sakai, N. Shinma,
Heterocycles 1976, 4, 985–988; total synthesis of C-mavacurine: b) M. J.
Calverley, B. J. Banks, J. Harley-Mason, Tetrahedron Lett. 1981, 22,
1635–1638; synthesis of 2,7-dihydropleiocapamine: c) M. L. Bennasar,
E. Zulaica, J. M. Jimenez, J. Bosch, J. Org. Chem. 1993, 58, 7756–7767;
synthetic studies: d) W. Ren, N. Tappin, Q. Wang, J. Zhu, Synlett 2013,
24, 1941–1944.
[19] The spontaneous desformylation at C16 could occur, during the aqueous
work-up, by attack of water on the aldehyde B leading to liberation of
formic acid. Alternatively, reduction of the aldehyde B with sodium
metabisulfite would lead to the corresponding alcohol, which would
spontaneously release formadehyde.
[20] R. J. Griffiths, G. A. Burley, E. P. A. Talbot, Org. Lett. 2017, 19, 870–873.
[21] See reference 1a and: a) I. Kompis, M. Hesse, H. Schmid, Lyoydia, 1971,
34, 269–291; b) M. Pinar, M. Hanaoka, M. Hesse, H. Schmid, Helv. Chim.
Acta, 1971, 54, 15-43.
[7]
a) D. Lachkar, N. Denizot, G. Bernadat, K. Ahamada, M. A. Beniddir, V.
Dumontet, J.-F. Gallard, R. Guillot, K. Leblanc, E. O. N’nang, V. Turpin,
C. Kouklovsky, E. Poupon, L. Evanno, G. Vincent, Nat. Chem. 2017, 9,
793–798; b) N. Denizot, D. Lachkar, C. Kouklovsky, E. Poupon, L.
Evanno, G. Vincent, Synthesis 2018, DOI 10.1055/s-0036-1591910; c)
S. Benayad, K. Ahamada, G. Lewin, L. Evanno, E. Poupon, Eur. J. Org.
Chem. 2016, 1494–1499; d) K. Ahamada, S. Benayad, E. Poupon, L.
Evanno, Tetrahedron Lett. 2016, 57, 1718–1720; e) S. Benayad, M. A.
Beniddir, L. Evanno, E. Poupon, Eur. J. Org. Chem. 2015, 1894–1898; f)
N. Denizot, A. Pouilhès, M. Cucca, R. Beaud, R. Guillot, C. Kouklovsky,
G. Vincent, Org. Lett. 2014, 16, 5752–5755; g) N. Denizot, R. Guillot, C.
Kouklovsky, G. Vincent, submitted.
[22] E. C. Tatsis, I. Carqueijeiro, T. D. de Bernonville, J. Franke, T.-T. T. Dang,
A. Oudin, A. Lanoue, F. Lafontaine, A. K. Stavrinides, M. Clastre, V.
Courdavault, S. E. O’Connor, Nat. Commun. 2017, 8, 316.
[23] Courdavault and O’Connor, during their recent biosynthetic study (ref 22),
reported evidence for the formation of geissoschizine prior to the
formation of the strychnan alkaloid akuammicine. While it has been
postulated that the strychnan system arises biosynthetically from the
skeletal rearrangement of the akuammilan skeleton, as observed
synthetically (ref 7c), it has not been demonstrated by biosynthetic
studies. In addition, during their synthetic transformation of the
geissoschizine scaffold into akuammicine, Martin and co-workers did not
observed the formation of the akuammilian skeleton (ref 8).
[8]
It should be noted that Martin oxidized 16-desformyl-geissoschizine 9
with t-BuOCl into a 7-chloroindolenine, which, in basic conditions, was
the subject of skeletal reorganization into the strychnan alkaloid
akuammicine: a) S. F. Martin, C. W. Clark, M. Ito, M. Mortimore, J. Am.
Chem. Soc. 1996, 118, 9804–9805; b) M. Ito, C. W. Clark, M. Mortimore,
J. B. Goh, S. F. Martin, J. Am. Chem. Soc. 2001, 123, 8003–8010.
This article is protected by copyright. All rights reserved.