Organic Letters
Letter
of Angostura Bark. Planta Med. 1999, 65, 250−254. Jacquemond-
Collet, I.; Bessiere, J.-M.; Hannedouche, S.; Bertrand, C.; Fouraste, I.;
Moulis, C. Identification of the alkaloids of Galipea officinalis by gas
chromatography−mass spectrometry. Phytochem. Anal. 2001, 12,
312−319.
aqueous NaOH solution at 80 °C furnished (−)-angustureine
in 94 and 83% yield over three steps starting from allene 1.
The synthesis of (−)-cuspareine starting from allylic amine
17, however, did not succeed satisfactorily employing the same
reaction conditions. Conversely, more forceful reaction
conditions had to be chosen in order to guarantee complete
hydroboration. Furthermore, the previously used conditions
for the Suzuki coupling resulted in low yields. Finally, after
being freed from the solvent (THF), the hydroboration
intermediate was reacted in the presence of [Pd(dppf)Cl2] and
Cs2CO3 in a solvent mixture of DMF/H2O. These reaction
conditions provided (−)-cuspareine in 63% yield and 25%
overall yield in four steps starting with commercially available
4-vinyl veratrole (5).
In conclusion, we have developed concise, enantioselective,
and protecting-group-free syntheses of (−)-angustureine and
(−)-cuspareine. In this context, we improved the catalyst
system of our previously developed hydroamination of allenes
with anilines now reaching higher yields and enantioselectiv-
ities. This allylic addition can be seen as an atom efficient
alternative to the conventionally applied allylic substitution.
(2) (a) Hamann, L. G.; Higuchi, R. I.; Zhi, L.; Edwards, J. P.; Wang,
X.-N.; Marschke, K. B.; Kong, J. W.; Farmer, L. J.; Jones, T. K.
Synthesis and Biological Activity of a Novel Series of Nonsteroidal,
Peripherally Selective Androgen Receptor Antagonists Derived from
1,2-Dihydropyridono[5,6-g]quinolines. J. Med. Chem. 1998, 41, 623−
639. (b) Di Fabio, R.; Alvaro, G.; Bertani, B.; Donati, D.; Pizzi, D. M.;
Gentile, G.; Pentassuglia, G.; Giacobbe, S.; Spada, S.; Ratti, E.; Corsi,
M.; Quartaroli, M.; Barnaby, R. J.; Vitulli, G. Chiral tetrahydroquino-
line derivatives as potent anti-hyperalgesic agents in animal models of
sustained inflammation and chronic neuropathic pain. Bioorg. Med.
Chem. Lett. 2007, 17, 1176−1180. (c) Prakesch, M.; Denisov, A. Y.;
Naim, M.; Gehring, K.; Arya, P. The discovery of small molecule
chemical probes of Bcl-XL and Mcl-1. Bioorg. Med. Chem. 2008, 16,
7443−7449. Kuo, G.-H.; Rano, T.; Pelton, P.; Demarest, K. T.; Gibbs,
A. C.; Murray, W. V.; Damiano, B. P.; Connelly, M. A. Design,
Synthesis, and Biological Evaluation of (2R,αS)-3,4-Dihydro-2-[3-
(1,1,2,2-tetrafluoroethoxy)phenyl]-5-[3-(trifluoromethoxy)-phenyl]-
α-(trifluoromethyl)-1(2H)-quinolineethanol as Potent and Orally
Active Cholesteryl Ester Transfer Protein Inhibitor. J. Med. Chem.
2009, 52, 1768−1772.
ASSOCIATED CONTENT
* Supporting Information
■
(3) (a) Mester, I. Alkaloids from root bark of Zanthoxylum simulans.
Fitoterapia 1973, 44, 123−152. (b) Jacquemond-Collet, I.; Benoit-
Vical, F.; Valentin, A.; Stanislas, E.; Mallie, M.; Fouraste, I.
Antiplasmodial and Cytotoxic Activity of Galipinine and other
Tetrahydroquinolines for Galipea officinalis. Planta Med. 2002, 68,
68−69.
S
The Supporting Information is available free of charge at
All synthetic procedures for new compounds as well as
1
their analytical data, involving H NMR and 13C NMR
(4) For a recent review on synthesis of Hancock alkaloids, see:
spectra and scanned HPLC chromatograms for chiral
Munoz, G. D.; Dudley, G. B. Synthesis of 1,2,3,4-Tetrahydroquino-
̃
lines including Angustureine and Congeneric Alkaloids. A Review.
Org. Prep. Proced. Int. 2015, 47, 179−206.
Accession Codes
(5) Asymmetric syntheses based on aza-Michael additions:
(a) Davies, S. G.; Ichihara, O. Asymmetric synthesis of R-β-amino
butanoic acid and S-β-tyrosine: Homochiral lithium amide equivalents
for Michael additions to α,β-unsaturated esters. Tetrahedron:
Asymmetry 1991, 2, 183−186. (b) Bentley, S. A.; Davies, S. G.;
Lee, J. A.; Roberts, P. M.; Thomson, J. E. Conjugate Addition of
Lithium N-Phenyl-N-(α-methylbenzyl)amide: Application to the
Asymmetric Synthesis of (R)-(−)-Angustureine. Org. Lett. 2011, 13,
2544−2547. (c) Davies, S. G.; Fletcher, A. M.; Houlsby, I. T. T.;
Roberts, P. M.; Thompson, J. E. Structural Revision of the Hancock
Alkaloid (−)-Galipeine. J. Org. Chem. 2017, 82, 10673−10679.
CCDC 1885897 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
́
́
́
́
(d) Fustero, S.; Moscardo, J.; Jimenez, D.; Perez-Carrion, M. D.;
́
́
Sanchez-Rosello, M.; del Pozo, C. Organocatalytic Approach to
Benzofused Nitrogen-Containing Heterocycles: Enantioselective
Total Synthesis of (+)-Angustureine. Chem. - Eur. J. 2008, 14,
9868−9872. (e) Taylor, L. L.; Goldberg, F. W.; Hii, K. K. Asymmetric
synthesis of 2-alkyl-substituted tetrahydroquinolines by an enantiose-
lective aza-Michael reaction. Org. Biomol. Chem. 2012, 10, 4424−
4432.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(6) Asymmetric syntheses based on Mitsunobu inversions:
(a) Theeraladanon, C.; Arisawa, M.; Nagakawa, M.; Nishida, A.
Total synthesis of (+)-(S)-angustureine and the determination of the
absolute configuration of the natural product angustureine Tetrahe-
dron. Tetrahedron: Asymmetry 2005, 16, 827−831. (b) Ryu, J. S.
Hydroarylation for the Facile Synthesis of 2-substituted Tetrahy-
droquinoline: A Concise Synthesis of (+)-(S)-Angustureine. Bull.
Korean Chem. Soc. 2006, 27, 631−632. (c) Madhubabu, M. V.;
Shankar, R.; Krishna, T.; Satish Kumar, Y.; Chiraneevi, Y.;
Muralikrishna, C.; Rama Mohan, H.; More, S. S.; Vasaveswara, M.
V.; Akula, R. A convergent approach towards the synthesis of the 2-
alkyl-substituted tetrahydroquinolines alkaloid (−)-cuspareine. Tetra-
hedron: Asymmetry 2017, 28, 1803−1807.
This work was supported by the DFG. Laura Stachowiak is
thanked for her skillful technical assistance. We thank Dr.
Daniel Kratzert for X-ray crystal structure analysis.
REFERENCES
■
(1) (a) Gerster, J. F.; Rohlfling, S. R.; Winady, R. M. American
Medicinal Chemistry Symposium, Toronto, 1982. (b) Jacquemond-
́
Collet, I.; Hannedouche, S.; Fabre, N.; Fouraste, I.; Moulis, C. Two
tetrahydroquinoline alkaloids from Galipea officinalis Phytochemistry.
Phytochemistry 1999, 51, 1167−1169. (c) Rakotoson, J.; Fabre, N.;
Jacquemond-Collet, I.; Hannedouche, S.; Fouraste, I.; Moulis, C.
Alkaloids from Galipea officinalis. Planta Med. 1998, 64, 762−763.
(d) Houghton, P. J.; Woldemariam, T. Z.; Watanabe, Y.; Yates, M.
Activity Against Mycobakterium tuberculosis of Alkaloid Constituents
(7) Chen, B.-L.; Wang, B.; Lin, G.-Q. Highly Diastereoselective
Addition of Alkynylmagnesium chlorides to N-tert-Butanesulfinyl
C
Org. Lett. XXXX, XXX, XXX−XXX