Communication
ChemComm
F. Giordanino, S. O. Odoh, W. S. Drisdell, B. Vlaisavljevich,
A. L. Dzubak, R. Poloni, S. K. Schnell, N. Planas, K. Lee, T. Pascal,
L. F. Wan, D. Prendergast, J. B. Neaton, B. Smit, J. B. Kortright,
L. Gagliardi, S. Bordiga, J. A. Reimer and J. R. Long, Nature, 2015,
519, 303; (c) J. Song, Z. Zhang, S. Hu, T. Wu, T. Jiang and B. Han,
Green Chem., 2009, 11, 1031–1036; (d) L. Liu, S.-M. Wang, Z.-B. Han,
M. Ding, D.-Q. Yuan and H.-L. Jiang, Inorg. Chem., 2016, 55,
3558–3565; (e) H. He, J. A. Perman, G. Zhu and S. Ma, Small, 2016,
12, 6309–6324; ( f ) D.-Y. Du, J.-S. Qin, S.-L. Li, Z.-M. Su and Y.-Q.
Lan, Chem. Soc. Rev., 2014, 43, 4615–4632; (g) J. Chen, K. Shen and
Y. Li, ChemSusChem, 2017, 10, 3165–3187; (h) B. Liu, S. Yao,
X. Liu, X. Li, R. Krishna, G. Li, Q. Huo and Y. Liu, ACS Appl. Mater.
Interfaces, 2017, 9, 32820–32828.
In conclusion, by a trisubstitution strategy, a novel class of
ternary hetero-metallic MOFs (FTPFs) has been successfully
synthesized and fully characterized. They contain (4,4)-grid-like
metalloporphyrin layers that are linked by linear Cu2+-(NbOF5)2À
chains to form an extended porous structure. Due to the
existence of a contracted pore-size, fluorine-rich channel surface,
and strong Cu–F/N bonding, the resultant FTPFs are found to be
robust in some common solvents including water, and also
resistant to heat (up to 250 1C in air). Featuring a high density
of eclipse-distributed open metal sites (OMSs) and the advan-
tages of using the SIFSIX-analogs, these materials are demon-
strated to have high CO2 trap capacities (up to B9 wt% uptake at
273 K under 1 atm), and excellent catalytic efficiency (499%
conversion) for the chemical fixation of CO2 and epoxides with
good recyclability under solvent-free conditions. Further studies
will be conducted on photoelectrochemical catalysis, and the
effect of decoration with a hetero-trimetal on the performance
will be addressed.
12 (a) A. Sayari, Y. Belmabkhout and R. Serna-Guerrero, Chem. Eng. J.,
2011, 171, 760–774; (b) T. M. McDonald, W. R. Lee, J. A. Mason,
B. M. Wiers, C. S. Hong and J. R. Long, J. Am. Chem. Soc., 2012, 134,
7056–7065; (c) S. Choi, T. Watanabe, T.-H. Bae, D. S. Sholl and
C. W. Jones, J. Phys. Chem. Lett., 2012, 3, 1136–1141; (d) R. W. Flaig,
T. M. Osborn Popp, A. M. Fracaroli, E. A. Kapustin, M. J. Kalmutzki,
R. M. Altamimi, F. Fathieh, J. A. Reimer and O. M. Yaghi, J. Am.
Chem. Soc., 2017, 139, 12125–12128; (e) Y.-Q. Lan, H.-L. Jiang, S.-L. Li
and Q. Xu, Adv. Mater., 2011, 23, 5015–5020; ( f ) H. Wang, H. Wu,
J. Kan, G. Chang, Z. Yao, B. Li, W. Zhou, S. Xiang, J. Cong-Gui Zhao
and B. Chen, J. Mater. Chem. A, 2017, 5, 8292–8296.
13 (a) S. Subramanian and M. J. Zaworotko, Angew. Chem., Int. Ed.,
1995, 34, 2127–2129; (b) S. D. Burd, S. Ma, J. A. Perman, B. J. Sikora,
R. Q. Snurr, P. K. Thallapally, J. Tian, L. Wojtas and M. J. Zaworotko,
J. Am. Chem. Soc., 2012, 134, 3663–3666.
14 (a) O. Shekhah, Y. Belmabkhout, Z. Chen, V. Guillerm, A. Cairns,
K. Adil and M. Eddaoudi, Nat. Commun., 2014, 5, 4228; (b) S. K.
Elsaidi, M. H. Mohamed, H. T. Schaef, A. Kumar, M. Lusi, T. Pham,
K. A. Forrest, B. Space, W. Xu, G. J. Halder, J. Liu, M. J. Zaworotko
and P. K. Thallapally, Chem. Commun., 2015, 51, 16872; (c) R.-B. Lin,
L. Li, H. Wu, H. Arman, B. Li, R.-G. Lin, W. Zhou and B. Chen, J. Am.
Chem. Soc., 2017, 139, 8022–8028.
This work was supported by the National Natural Science
Foundation of China (Grant No. 21501028), the National Science
Foundation of Fujian Province (Grant No. 2017J01039), the
Strategic Priority Research Program of Chinese Academy of
Sciences (Grant No. XDB20000000) and the Hundred-Talent
Program of Fujian Institute of Research on the Structure of
Matter, Chinese Academy of Sciences.
15 (a) X. Fang, Q. Shang, Y. Wang, L. Jiao, T. Yao, Y. Li, Q. Zhang, Y. Luo
and H.-L. Jiang, Adv. Mater., 2018, 30, 1705112; (b) D. Feng, Z.-Y. Gu,
J.-R. Li, H.-L. Jiang, Z. Wei and H.-C. Zhou, Angew. Chem., Int. Ed.,
2012, 51, 10307–10310; (c) Q. Lin, X. Bu, A. Kong, C. Mao, F. Bu and
P. Feng, Adv. Mater., 2015, 27, 3431–3436; (d) J. A. Johnson, J. Luo,
Conflicts of interest
There are no conflicts to declare.
´
X. Zhang, Y.-S. Chen, M. D. Morton, E. Echeverrıa, F. E. Torres and
J. Zhang, ACS Catal., 2015, 5, 5283–5291.
Notes and references
1 M. R. Allen, D. J. Frame, C. Huntingford, C. D. Jones, J. A. Lowe, 16 (a) C. A. Trickett, A. Helal, B. A. Al-Maythalony, Z. H. Yamani,
M. Meinshausen and N. Meinshausen, Nature, 2009, 458, 1163.
2 T. Sakakura, J.-C. Choi and H. Yasuda, Chem. Rev., 2007, 107,
2365–2387.
3 (a) M. Mikkelsen, M. Jørgensen and F. C. Krebs, Energy Environ. Sci.,
2010, 3, 43–81; (b) C. Maeda, T. Taniguchi, K. Ogawa and T. Ema,
Angew. Chem., Int. Ed., 2015, 54, 134–138.
K. E. Cordova and O. M. Yaghi, Nat. Rev. Mater., 2017, 2, 17045;
(b) H. Zhang, J. Wei, J. Dong, G. Liu, L. Shi, P. An, G. Zhao, J. Kong,
X. Wang, X. Meng, J. Zhang and J. Ye, Angew. Chem., 2016, 128,
14522–14526; (c) E.-X. Chen, M. Qiu, Y.-F. Zhang, Y.-S. Zhu, L.-Y. Liu,
Y.-Y. Sun, X. Bu, J. Zhang and Q. Lin, Adv. Mater., 2018, 30, 1704388;
(d) H.-Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S.-H. Yu and
H.-L. Jiang, J. Am. Chem. Soc., 2015, 137, 13440–13443; (e) W.-Y. Gao,
L. Wojtas and S. Ma, Chem. Commun., 2014, 50, 5316–5318.
4 H. Kawanami, A. Sasaki, K. Matsui and Y. Ikushima, Chem. Commun.,
2003, 896–897.
¨
5 M. Ulusoy, O. -Sahin, A. Kilic and O. Bu¨yu¨kgu¨ngor, Catal. Lett., 2011, 17 Q. Lin, C. Mao, A. Kong, X. Bu, X. Zhao and P. Feng, J. Mater. Chem.
141, 717–725. A, 2017, 5, 21189–21195.
6 M. M. Dharman, J.-I. Yu, J.-Y. Ahn and D.-W. Park, Green Chem., 18 A. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout and M. Eddaoudi,
2009, 11, 1754–1757. Science, 2016, 353, 137–140.
7 (a) A. Chen, Y. Zhang, J. Chen, L. Chen and Y. Yu, J. Mater. Chem. A, 19 (a) Q. Liu, H. Cong and H. Deng, J. Am. Chem. Soc., 2016, 138,
2015, 3, 9807–9816; (b) S. Kumar, M. Y. Wani, C. T. Arranja, J. D. A. e
Silva, B. Avula and A. J. F. N. Sobral, J. Mater. Chem. A, 2015, 3,
19615–19637.
8 H. Yasuda, L.-N. He, T. Sakakura and C. Hu, J. Catal., 2005, 233,
119–122.
13822–13825; (b) A. Helal, Z. H. Yamani, K. E. Cordova and
O. M. Yaghi, Natl. Sci. Rev., 2017, 4, 296–298.
20 Accelerys Materials Studio Release Notes, release 5.5.1; Accelrys.
Software, Inc., San Diego, CA, 2010.
21 (a) D. Feng, W.-C. Chung, Z. Wei, Z.-Y. Gu, H.-L. Jiang, Y.-P. Chen,
D. J. Darensbourg and H.-C. Zhou, J. Am. Chem. Soc., 2013, 135,
17105–17110; (b) X. Wang, W.-Y. Gao, Z. Niu, L. Wojtas, J. A. Perman,
Y.-S. Chen, Z. Li, B. Aguila and S. Ma, Chem. Commun., 2018, 54,
1170–1173; (c) W.-Y. Gao, Y. Chen, Y. Niu, K. Williams, L. Cash, P. J.
Perez, L. Wojtas, J. Cai, Y.-S. Chen and S. Ma, Angew. Chem., Int. Ed.,
2014, 53, 2615–2619; (d) W.-Y. Gao, C.-Y. Tsai, L. Wojtas, T. Thiounn,
C.-C. Lin and S. Ma, Inorg. Chem., 2016, 55, 7291–7294.
¨
9 (a) K. R. Thampi, J. Kiwi and M. Gratzel, Nature, 1987, 327, 506;
(b) M. R. Hudson, W. L. Queen, J. A. Mason, D. W. Fickel, R. F. Lobo
and C. M. Brown, J. Am. Chem. Soc., 2012, 134, 1970–1973.
10 (a) Y. Xie, T.-T. Wang, X.-H. Liu, K. Zou and W.-Q. Deng, Nat.
Commun., 2013, 4, 1960; (b) X. Zhan, Z. Chen and Q. Zhang, J. Mater.
Chem. A, 2017, 5, 14463–14479.
11 (a) P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke,
K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi and 22 W.-Y. Gao, Y. Chen, Y. Niu, K. Williams, L. Cash, P. J. Perez,
M. J. Zaworotko, Nature, 2013, 495, 80; (b) T. M. McDonald,
L. Wojtas, J. Cai, Y.-S. Chen and S. Ma, Angew. Chem., 2014, 126,
2653–2657.
`
J. A. Mason, X. Kong, E. D. Bloch, D. Gygi, A. Dani, V. Crocella,
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 412--415 | 415