A. Saito, H. Sakurai, K. Sudo, K. Murai, Y. Hanzawa
SHORT COMMUNICATION
4315–4319; e) X. Wang, A. M. Kauppi, R. Olsson, F. Almqvist,
Eur. J. Org. Chem. 2003, 4586–4592; f) P. Mangeney, R. Gos-
mini, S. Raussou, M. Commerçon, A. Alexakis, J. Org. Chem.
1994, 59, 1877–1888; g) A. Alexakis, F. Amiot, Tetrahedron:
Asymmetry 2002, 13, 2117–2122.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and physical data for new com-
pounds (3a–e, 5, 7a, 9a–e, 10b–d).
[9]
Examples of enolate nucleophiles: a) K. Akiba, M. Nakatani,
M. Wada, Y. Yamamoto, J. Org. Chem. 1985, 50, 63–68; b) S.
Yamada, C. Morita, Chem. Lett. 2001, 1034–1035; c) Y.-M.
Chang, Y.-S. Park, S.-H. Lee, C.-M. Yoon, Tetrahedron Lett.
2004, 45, 9049–9052; d) H. Rudler, B. Denise, Y. Xu, A. Parlier,
J. Vaissermann, Eur. J. Org. Chem. 2005, 3724–3749; e) J. S.
Yadav, B. V. S. Reddy, M. K. Gupta, U. Dash, D. C. Bhunia,
S. S. Hossain, Synlett 2007, 2801–2804; f) H. Huang, W. Hu,
Tetrahedron 2007, 63, 11850–11855; g) A. Schmidt, D. Mich-
alik, S. Rotzoll, E. Ullah, C. Fischer, H. Reinke, H. Goerls, P.
Langer, Org. Biomol. Chem. 2008, 6, 2804–2814.
a) J. L. Díaz, M. Miguel, R. Lavilla, J. Org. Chem. 2004, 69,
3550–3353; b) N. A. O. Williams, C. Masdeu, J. L. Díaz, R.
Lavilla, Org. Lett. 2006, 8, 5789–5792.
Additions of 2-lithio-1,3-dithianes as “masked” acyl anion
equivalents into azaaromatics have been known. See a) T. Tag-
uchi, M. Nishi, K. Watanabe, T. Mukaiyama, Chem. Lett.
1973, 1307–1308; b) D. Dirnberger, W. Wiegrebe, Arch. Pharm.
1990, 323, 323–330.
Acknowledgments
This work was partially supported by Japan Society for the Pro-
motion of Science (JSPS) Grants-in-Aid for Young Scientists (B)
(Grant No 24790024) and Japan Society for the Promotion of Sci-
ence (JSPS) Grants-in-Aid for Scientific Research (C) (Grant No
22590016).
[1] a) W. N. Speckamp, M. J. Moolenaar, Tetrahedron 2000, 56,
3817–3856; b) A. Yazici, S. G. Pyne, Synthesis 2009, 339–368;
c) A. Yazici, S. G. Pyne, Synthesis 2009, 513–541; d) W. Sliwa,
Heterocycles 1986, 24, 181–219; e) N. Kielland, R. Lavilla, Top.
Heterocycl. Chem. 2010, 25, 127–168; f) M. Ahamed, M. H.
Todd, Eur. J. Org. Chem. 2010, 5935–5942.
[2] a) C. Chen, Y.-F. Zhu, X.-J. Liu, Z.-X. Lu, Q. Xie, N. Ling, J.
Med. Chem. 2001, 44, 4001–4010; b) B. Reux, T. Nevalainen,
K. H. Raitio, A. M. P. Koskinen, Bioorg. Med. Chem. 2009, 17,
4441–4447; c) H.-Y. Lee, L.-W. Lee, C.-Y. Nien, C.-C. Kuo, P.-
Y. Lin, C.-Y. Chang, J.-Y. Chang, J.-P. Liou, Org. Biomol.
Chem. 2012, 10, 9593–9600; d) R. Nishikawa-Shimono, Y. Se-
kiguchi, T. Koami, M. Kawamura, D. Wakasugi, K. Watanabe,
S. Wakahara, K. Matsumoto, T. Takayama, Bioorg. Med.
Chem. Lett. 2012, 22, 3305–3310; e) Y.-N. Zhang, X.-G. Zhong,
Z.-P. Zheng, X.-D. Hu, J.-P. Zuo, L.-H. Hu, Bioorg. Med.
Chem. 2007, 15, 988–996.
[3] a) A. Reissert, Ber. Dtsch. Chem. Ges. 1905, 38, 1603–1614; b)
F. D. Popp, A. Soto, J. Chem. Soc. 1963, 1760–1763; c) R. H.
Reuss, N. G. Smith, L. J. Winters, J. Org. Chem. 1974, 39,
2027–2031; d) M. Takamura, K. Funabashi, M. Kanai, M. Shi-
basaki, J. Am. Chem. Soc. 2001, 123, 6801–6808; e) M. Pauvert,
S. C. Collet, M.-J. Bertrand, A. Y. Guingant, M. Evain, Tetra-
hedron Lett. 2005, 46, 2983–2987.
[4] a) R. Yamaguchi, Y. Omoto, M. Miyake, K. Fujita, Chem.
Lett. 1998, 547–548; b) G. Guanti, S. Perrozzi, R. Riva, Tetra-
hedron: Asymmetry 1998, 9, 3923–3927; c) Y. Yamazaki, K.
Fujita, R. Yamaguchi, Chem. Lett. 2004, 33, 1316–1317; d) J. S.
Yadav, B. V. S. Reddy, M. Sreenivas, K. Sathaiah, Tetrahedron
Lett. 2005, 46, 8905–8908; e) D. A. Black, R. E. Beveridge,
B. A. Arndtsen, J. Org. Chem. 2008, 73, 1906–1910.
[5] a) Y. Yamaoka, H. Miyabe, Y. Takemoto, J. Am. Chem. Soc.
2007, 129, 6686–6687; b) T. Kodama, P. N. Moquist, S. E.
Schaus, Org. Lett. 2011, 13, 6316–6319; c) G. Signore, C. Mal-
anga, R. Menicagli, Tetrahedron 2008, 64, 197–203; d) A. Saito,
K. Iimura, M. Hayashi, Y. Hanzawa, Tetrahedron Lett. 2009,
50, 587–589; e) A. Saito, K. Sudo, K. Iimura, M. Hayashi, Y.
Hanzawa, Heterocycles 2012, 86, 267–280.
[6] a) D. L. Comins, N. B. Mantlo, Tetrahedron Lett. 1987, 28,
759–762; b) D. L. Comins, Y.-C. Myoung, J. Org. Chem. 1990,
55, 292–298; c) Y.-M. Chang, S.-H. Lee, M.-H. Nam, M.-Y.
Cho, Y.-S. Park, C.-M. Yoon, Tetrahedron Lett. 2005, 46, 3053–
3056; d) R. E. Beveridge, D. A. Black, B. A. Arndtsen, Eur. J.
Org. Chem. 2010, 3650–3656; e) T. J. A. Graham, J. D. Shields,
A. G. Doyle, Chem. Sci. 2011, 2, 980–984.
[7] a) R. Yamaguchi, M. Tanaka, T. Matsuda, T. Okano, T. Nag-
ura, K. Fujita, Tetrahedron Lett. 2002, 43, 8871–8874; b) S.-H.
Lee, Y.-S. Park, M.-H. Nam, C.-M. Yoon, Org. Biomol. Chem.
2004, 2, 2170–2172; c) J. S. Yadav, B. V. S. Reddy, M. Srinivas,
K. Sathaiah, Tetrahedron Lett. 2005, 46, 3489–3492; d) S. Yam-
ada, M. Inoue, Org. Lett. 2007, 9, 1477–1480.
[8] a) E. Piers, M. Soucy, Can. J. Chem. 1974, 52, 3563–3564; b)
K. Akiba, Y. Iseki, M. Wada, Bull. Chem. Soc. Jpn. 1984, 57,
1994–1999; c) R. Yamaguchi, Y. Nakazono, T. Matsuki, E.
Hata, M. Kawanishi, Bull. Chem. Soc. Jpn. 1987, 60, 215–222;
d) D. L. Comins, A. H. Abdullah, J. Org. Chem. 1982, 47,
[10]
[11]
[12]
[13]
[14]
C. A. Bertelo, J. Schwartz, J. Am. Chem. Soc. 1975, 97, 228–
230.
Comprehensive paper: Y. Hanzawa, T. Taguchi, J. Synth. Org.
Chem. Jpn. 2004, 62, 314–323.
a) A. Saito, Y. Oka, Y. Nozawa, Y. Hanzawa, Tetrahedron Lett.
2006, 47, 2201–2204; b) Y. Hanzawa, Y. Oka, M. Yabe, J. Or-
ganomet. Chem. 2007, 692, 4528–4534; c) Y. Hanzawa, Y. Tak-
ebe, A. Saito, A. Kakuuchi, H. Fukaya, Tetrahedron Lett. 2007,
48, 6471–6474.
a) A. Kakuuchi, T. Taguchi, Y. Hanzawa, Tetrahedron Lett.
2001, 42, 1547–1549; b) A. Kakuuchi, T. Taguchi, Y. Hanzawa,
Eur. J. Org. Chem. 2003, 116–122.
a) Y. Hanzawa, K. Narita, M. Yabe, T. Taguchi, Tetrahedron
2002, 58, 10429–10435; b) P. Wipf, W. Xu, J. H. Smitrovich, R.
Lehmann, L. M. Venanzi, Tetrahedron 1994, 50, 1935–1954; c)
A. El-Batta, T. R. Hage, S. Plotkin, M. Bergdahl, Org. Lett.
2004, 6, 107–110.
a) S. Harada, T. Taguchi, N. Tabuchi, K. Narita, Y. Hanzawa,
Angew. Chem. 1998, 110, 1796; Angew. Chem. Int. Ed. 1998,
37, 1696–1698; b) P. Wipf, W. Xu, Tetrahedron 1995, 51, 4551–
4562; c) K. Suzuki, T. Hasegawa, T. Imai, H. Maeta, S. Obata,
Tetrahedron 1995, 51, 4483–4494.
Other metal catalysts, such as Pd(OAc)2, (Ph3P)2PdCl2, (Ph3P)
2NiCl2, [RhCl(cod)]2 (cod = cyclooctadiene), (Ph3P)AuCl,
PtCl2, ZnCl2, BF3·OEt2, Yb(OTf)3, or Cu(OTf)2, did not pro-
mote the Reissert-type acylation.
[15]
[16]
[17]
[18]
[19]
Other AgI additives, such as AgSbF6, AgAsF6, AgPF6,
AgNTf2, or AgOTf, instead of AgBF4, showed inferior results
in both yields and regioselectivities of the acylated adducts 9b
and 10b. See Supporting Information for results of attempted
catalytic reactions.
1
[20]
[21]
Rh- and Cu-catalyzed reactions of 3-bromoquinoline (R = Br,
R2 = H) did not take place; only the starting material was
recovered.
We confirmed the generation of acylisoquinolinium ion 11a by
1
the H NMR spectroscopic measurement of a mixture of iso-
quinoline (2a) and ClCO2Et (1.2 equiv.) in CD3NO2 at room
1
temperature. The H NMR spectrum shows new peaks for the
C-1 proton (δ = 10.59 ppm) and the Et protons [CH3 (δ =
1.61 ppm), CH2 (δ = 4.91 ppm)] of 11a along with the C-1 pro-
ton of 2a. The ratio of 11a to 2a depends on the amounts of
ClCO2Et (1.2 equiv: 11a/2a = 1.1:1, 2.4 equiv: 11a/2a = 2:1),
which indicates the equilibrium between 11a and 2a (see the
Supporting Information).
7298
www.eurjoc.org
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2013, 7295–7299