Article
Inorganic Chemistry, Vol. 48, No. 18, 2009 8879
compounds efficiently enhance image contrast and provide an
invaluable tool to delineate disease-related tissue alterations.
Innovative ligand structures are continuously tested to improve
the relaxation features of the Gd3+ complexes and to better
understand the relations between chemical structure and effi-
cacy and stability of the chelates.5,6 The efficacy of these
contrast agents is governed by their microscopic properties,
the most important ones being the hydration number, the water
exchange rate, and the rotational dynamics of the Gd3+
complex.7 In the past years, significant efforts have been made
to optimize these parameters. The main factors influencing
water exchange have been identified as the steric crowding
around the water binding site8 and the flexibility of the inner
coordination sphere.9 Novel ligands ensuring optimal water
exchange have been synthesized based on a rational design.10
Furthermore, the stability of the chelates to be used in vivo is
also a very important issue.11 The complexes have to be
eliminated intact from the body to avoid any toxicity associated
with the release of free Gd3+. Therefore, high thermodynamic
stability and kinetic inertness are prerequisites for safe medical
use of these chelates.12
Recently, we have reported a series of acyclic chelators
bearing picolinate arms and carboxylate or phosphonate
groups designed for Gd3+ complexation in aqueous solution
(Chart 1).9,13 These ligands form thermodynamically stable
lanthanide complexes.14 Interestingly, the water exchange
rate on the phosphonate derivative Gd3+ complex of L2 has
been found to be extremely high, comparable to that on the
aqua ion itself.9 This fast water exchange has been related to
the flexible nature of the chelate, and indeed, the rigidifica-
tion of the ligand backbone by introducing a cyclohexyl
ring (L3) resulted in a decrease of the water exchange rate.9
In a recent paper we described a novel picolinate-deriva-
tive molecule based on the 1,7-diaza-12-crown-4 platform
Chart 1
(bp12c42-, Chart 1).15 This macrocyclic chelator is expected
to form kinetically more inert complexes with respect to the
previous acyclic picolinate analogues, which will be an
advantage to prevent toxicity. On the other hand, the optimal
water exchange characteristics reported for complexes with
picolinate arms could be preserved. The octadentate ligand
bp12c42- was shown to form lanthanide complexes that
contain one or two inner sphere water molecules resulting
in nine- and ten-coordinate chelates for the heavier and
lighter lanthanides, respectively.15 Complexes of lanthanides
around the middle of the series are present in the form of
hydration equilibrium between mono- and bisaqua species,
as it was proved by luminescence lifetime and UV-vis
absorbance measurements on the Eu3+ analogue (the aver-
age hydration number on the Eu3+ complex is qave = 1.4 at
298 K). While hydration equilibria are relatively common for
Eu3+ and Gd3+ complexes, they usually involve eight- and
nine-coordinate species.16 Indeed, coordination number 10 is
rather unusual in the solution chemistry of lanthanide com-
plexes with amino-carboxylates and related ligands.17 To the
best of our knowledge, no water exchange data are available
on ten-coordinate Gd3+ complexes.
(5) (a) Aime, S.; Calabi, L.; Cavallotti, C.; Gianolio, E.; Giovenzana, G.
B.; Losi, P.; Maiocchi, A.; Palmisano, G.; Sisti, M. Inorg. Chem. 2004, 43,
7588–7590. (b) Baranyai, Z.; Uggeri, F.; Giovenzana, G. B.; Benyei, A.; Brucher,
E.; Aime, S. Chem.;Eur. J. 2009, 15, 1696–1705. (c) Gianolio, E.; Giovenzana,
G. B.; Longo, D.; Longo, I.; Menegotto, I.; Aime, S. Chem.;Eur. J. 2007, 13,
5785–5797. (d) Elemento, E. M.; Parker, D.; Aime, S.; Gianolio, E.; Lattuada, L.
Org. Biomol. Chem. 2009, 7, 1120–1131.
(6) Pellegatti, L.; Zhang, J.; Drahos, B.; Villette, S.; Suzenet, F.;
Guillaumet, G.; Petoud, S.; Toth, E. Chem. Commun. 2008, 6591–6593.
(7) Peters, J. A.; Huskens, J.; Raber, D. J. Prog. NMR Spectrosc. 1996, 28,
283–350.
(8) (a) Ruloff, R.; Toth, E.; Scopelliti, R.; Tripier, R.; Handel, H.;
Merbach, A. E. Chem. Commun. 2002, 2630–2631. (b) Laus, S.; Ruloff, R.;
Toth, E.; Merbach, A. E. Chem.;Eur. J. 2003, 9, 3555–3566.
(9) (a) Mato-Iglesias, M.; Platas-Iglesias, C.; Djanashvili, K.; Peters, J.
A.; Toth, E.; Balogh, E.; Muller, R. N.; Vander Elst, L.; de Blas, A.;
Here we report the protonation constants of bp12c42-
and the thermodynamic stability constants determined for
complexes with a series of lanthanides and some biologi-
cally relevant divalent metal ions. The kinetic inertness
of the Ce3+ and Gd3+ complexes has been assessed in
strongly acidic solutions, as well as at pH 4.5-5.5 by
transmetalation studies. A variable temperature 17O
NMR study performed on [Gd(bp12c4)(H2O)q]+ yielded
parameters characterizing water exchange and rotation.
Finally, the formation of ternary complexes between
Rodrıguez-Blas, T. Chem. Commun. 2005, 4729–4731. (b) Balogh, E.; Mato-
´
Iglesias, M.; Platas-Iglesias, C.; Toth, E.; Djanashvili, K.; Peters, J. A.; de Blas, A.;
Rodríguez-Blas, T. Inorg. Chem. 2006, 45, 8719–8728.
(10) (a) Jaszberenyi, Z.; Sour, A.; Toth, E.; Benmelouka, M.; Merbach, A.
ꢀ
E. Dalton Trans. 2005, 2713–2719. (b) Kotek, J.; Lebduskova, P.; Hermann, P.;
Vander Elst, L.; Muller, R. N.; Geraldes, C. F. G. C.; Maschmeyer, T.; Luke, I.;
Peters, J. A. Chem.;Eur. J. 2003, 9, 5899–5915. (c) Polasek, M.; Sedinova, M.;
Kotek, J.; Vander Elst, L.; Muller, R. N.; Hermann, P.; Lukes, I. Inorg. Chem.
2009, 48, 455–465.
(15) Mato-Iglesias, M.; Roca-Sabio, A.; Palinkas, Z.; Esteban-Gomez,
D.; Platas-Iglesias, C.; Toth, E.; de Blas, A.; Rodriguez-Blas, T. Inorg. Chem.
2008, 47, 7840–7851.
(11) Cheng, S.; Abramova, L.; Saab, G.; Turabelidze, G.; Patel, P.;
ꢀ ꢀ
(16) (a) Graeppi, N.; Powell, D. H.; Laurenczy, G.; Zekany, L.; Merbach,
Arduino, M.; Hess, T.; Kallen, A.; Jhung, M. JAMA 2007, 297, 1542–1544.
::
A. E. Inorg. Chim. Acta 1995, 235, 311–326. (b) Platas-Iglesias, C.; Corsi, D.
(12) Brucher, E.; Sherry, A. D. Stability and Toxicity of Contrast Agents.
::
ꢀ
ꢀ
M.; Vander Elst, L.; Muller, R. N.; Imbert, D.; Bunzli, J.-C. G.; Toth, E.;
In The Chemistry of Contrast Agents in Medical Magnetic Resonante
Maschmeyer, T.; Peters, J. A. J. Chem. Soc., Dalton Trans. 2003, 727–737.
´ ´
(17) (a) Valencia, L.; Martınez, J.; Macıas, A.; Bastida, R.; Carvalho, R.
ꢀ
Imaging; Toth, E., Merbach, A. E., Eds.; Wiley: Chichester, 2001; pp 243-279.
(13) Platas-Iglesias, C.; Mato-Iglesias, M.; Djanashvili, K.; Muller, R. N.;
~
A.; Geraldes, C. F. G. C. Inorg. Chem. 2002, 41, 5300–5312. (b) Nunez, C.;
Bastida, R.; Macías, A.; Mato-Iglesias, M.; Platas-Iglesias, C.; Valencia, L.
Dalton Trans. 2008, 3841–3850. (c) Chatterton, N.; Bretonniere, Y.; Pecaut, J.;
Mazzanti, M. Angew. Chem., Int. Ed. 2005, 44, 7595–7598.
Vander Elst, L.; Peters, J. A.; de Blas, A.; Rodrı
2004, 10, 3579–3590.
(14) Mato-Iglesias, M.; Balogh, E.; Platas-Iglesias, C.; Toth, E.; de Blas,
A.; Rodrıguez-Blas, T. Dalton Trans. 2006, 5404–5415.
´
guez-Blas, T. Chem.;Eur. J.
´