Angewandte
Chemie
Table 4: Representative ACA catalyzed by 25 and 26.[a]
Keywords: asymmetric catalysis · conjugate addition · copper ·
enantioselectivity · zinc
.
1Þ 8 mol % catalyst, ½Et2Znꢂ, PhCHO
7
9b
!
2Þ PCC, NaOAc
Entry
Catalyst
Conv. [%][b]
Yield [%][c]
ee [%][d]
[1] a) N. Krause, A. Hoffmann-Roder, Synlett 2001, 171 – 196; b) A.
Alexakis, C. Benhaim, Eur. J. Org. Chem. 2002, 3221– 3236;
c) B. L. Feringa, R. Naasz, R. Imbos, L. A. Arnold in Modern
Organocopper Chemistry (Ed.: N. Krause), Wiley-VCH, Wein-
heim, 2002, pp. 224 – 258.
1
2
3
4
1 + CuCl
25
1 + Cul
26
92
92
57
92
51
87
24
74
90
94
63
89
[2] a) S. J. Degrado, H. Mizutani, A. H. Hoveyda, J. Am. Chem. Soc.
2001, 123, 755 – 756; b) H. Mizutani, S. J. Degrado, A. H.
Hoveyda, J. Am. Chem. Soc. 2002, 124, 779 – 781; c) S. J.
Degrado, H. Mizutani, A. H. Hoveyda, J. Am. Chem. Soc.
2002, 124, 13362 – 13363; d) R. R. Cesati III, J. de Armas, A. H.
Hoveyda, J. Am. Chem. Soc. 2004, 126, 96 – 101; for an overview,
see: e) A. H. Hoveyda, A. W. Hird, M. A. Kacprzynski, Chem.
Commun. 2004, 1779 – 1785.
[a] [Et2Zn] (3 equiv), ꢀ308C, toluene, 12 h, N2. [b] Conversion deter-
1
mined by analysis of 400 MHz HNMR spectra of unpurified mixtures.
[c] Isolated yields after silica gel chromatography; oxidations proceed in
ꢃ90% isolated yield. [d] Enantioselectivities determined by chiral HPLC
analysis.
[3] For representative recent examples (subsequent to reviews in
reference [1]), see: a) A. Alexakis, C. Benhaim, S. Rosset, M.
Humam, J. Am. Chem. Soc. 2002, 124, 5262 – 5263; b) I. J.
Krauss, J. L. Leighton, Org. Lett. 2003, 5, 3201– 3203; c) A. P.
Duncan, J. L. Leighton, Org. Lett. 2004, 6, 4117 – 4119; d) D.
Pena, F. Lopez, S. R. Harutyunyan, A. J. Minnaard, B. L.
Feringa, Chem. Commun. 2004, 1836 – 1837.
air) promotes ACA with equal efficiency and enantioselec-
tivity, a similar batch of 25 affords 9b in 87% yield and
72% ee (vs. 94% with a freshly prepared sample).
An additional example, shown in Equation (1), illustrates
that isolation of Cu-peptide chiral complexes is not limited to
[4] For representative recent examples (subse-
quent to reviews in reference [1]), see:
a) C. A. Luchaco-Cullis, A. H. Hoveyda, J.
Am. Chem. Soc. 2002, 124, 8192 – 8193; b) A.
Duursma, A. J. Minnaard, B. L. Feringa, J. Am.
Chem. Soc. 2003, 125, 3700 – 3701; c) U. Eilitz,
F. Lessmann, O. Seidelmann, V. Wendisch,
Tetrahedron: Asymmetry 2003, 14, 189 – 191;
d) D. M. Mampreian, A. H. Hoveyda, Org.
Lett. 2004, 6, 2829 – 2832; e) H. Choi, Z. Hua,
I. Ojima, Org. Lett. 2004, 6, 2689 – 2691; f) J.
Wu, D. M. Mampreian, A. H. Hoveyda, J. Am.
Chem. Soc. 2005, 127, 4584 – 4585.
[5] For catalytic ACA of dialkylzinc reagents to
acyclic unsaturated carboxylic acid derivatives,
see: a) A. W. Hird, A. H. Hoveyda, Angew.
Chem. 2003, 115, 1314 – 1317; Angew. Chem.
Int. Ed. 2003, 42, 1276 – 1279; b) J. Schuppan,
the derivatives of phosphane 1. Thus, in the presence of 27
(16 mol%), derived through reaction of 2 (d = ꢀ10.7 ppm,
31P NMR) with CuCl (1equiv, CH 2Cl2, 228C; 84% yield),
heterocyclic enone 22 can be converted to 24a in 95% ee and
80% de. Similar to reactions with 25 and 26, the copper
chloride complex is less effective than when the chiral catalyst
is prepared in situ from (CuOTf)2·C6H6 and phosphane 2 (see
entry 3, Table 3).
In summary, we report the first generally effective method
for catalytic ACA of dialkylzinc reagents to unsaturated
furanones and pyranones with different steric and electronic
properties. The present method significantly enhances the
general utility of Cu-catalyzed ACA of alkylmetal reagents to
unsaturated carbonyls. Synthesis, isolation, and character-
ization of catalytically active and air-stable chiral Cu–peptide
complexes 25–27 enhance the practical utility of these
protocols and set the stage for future mechanistic investiga-
tions.
A. J. Minaard, B. L. Feringa, Chem. Commun. 2004, 792 – 793;
for a recent study involving alkyl Grignard reagents with an air-
stable chiral Cu complex, see: c) F. Lopez, S. R. Harutyunyan, A.
Meetsma, A. J. Minaard, B. L. Feringa, Angew. Chem. 2005, 117,
2812 – 2816; Angew. Chem. Int. Ed. 2005, 44, 2752 – 2756.
[6] a) M. Yan, Z-Y. Zhou, A. S. C. Chan, Chem. Commun. 2000,
115 – 116; b) M. T. Reetz, A. Gosberg, D. Moulin, Tetrahedron
Lett. 2002, 43, 1189 – 1191; c) L. Liang, L. Su, X. Li, A. S. C.
Chan, Tetrahedron Lett. 2003, 44, 7217 – 7220; d) L. Liang, M.
Yan, Y-M. Li, A. S. C. Chan, Tetrahedron: Asymmetry 2004, 15,
2575 – 2578; for Cu-catalyzed ACA of alkylzinc and alkylalumi-
nium reagents to six-membered unsaturated lactams, see: e) M.
Pineschi, F. Del Moro, F. Gini, A. J. Minnaard, B. L. Feringa,
Chem. Commun. 2004, 1244 – 1245; for Cu-catalyzed ACA of
alkylzinc reagents to 4-piperidones, see: f) R. Sebesta, M. G.
Pizzuti, A. J. Boersma, A. J. Minnaard, B. L. Feringa, Chem.
Commun. 2005, 1711 – 1713.
[7] For related approaches involving catalytic asymmetric hydride
conjugate additions, see: a) G. Hughes, M. Kimura, S. L.
Buchwald, J. Am. Chem. Soc. 2003, 125, 11253 – 11258;
b) B. H. Lipshutz, J. M. Servesko, B. R. Taft, J. Am. Chem. Soc.
2004, 126, 8352 – 8353.
[8] For Rh-catalyzed enantioselective additions of arylzinc reagents
to 4-piperidones, see: a) R. Shintani, N. Tokunaga, H. Doi, T.
Hayashi, J. Am. Chem. Soc. 2004, 126, 6240 – 6241; for Rh-
Received: April 9, 2005
Published online: July 25, 2005
Angew. Chem. Int. Ed. 2005, 44, 5306 –5310
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5309