5
2
MAB-Cu complex in MeCN contributed to the conversion of
+
Acknowledgments
excimer species into monomers according to the solvent type.
We thank SUBAP (Grant Number 14401027) for financial
support.
References and notes
1
2
3
.
.
.
Kim, H. J.; Park, Y. S.; Yoon, S.; Kim, J. S. Tetrahedron 2008
294-1300.
Zheng, Y.; Gatta´s-Asfura, K. M.; Konka, V.; Leblance, R. M. Chem.
Commun. 2002, 2350-2351.
, 64,
1
Xu, Z.; Xiao, Y.; Qian, X.; Cui, J.; Cui, D.; Org. Lett. 2005
92.
Malkondu, S.; Erdemir, S. Tetrahedron 2014
Krämer, R. Angew. Chem. Int. Ed. 1998 37, 772-773.
Kim, B. E.; Nevitt, T.; Thiele, D. J. Nat. Chem. Biol. 2008
85.
Lovstad, R. A. BioMetals 2004
Malvankar, P. L.; Shinde, V. M. Analyst 1991
Vulpe, C.; Levinson, B.; Whiteny, S.; Packman, S.; Gitschier, J. Nat.
Genet. 1993 , 7-13.
0. Bull, P. C.; Thomas, G. R.; Rommens, J. M.; Forbes, J. R.; Cox, D.
W.; Nat. Genet. 1993 , 327-337.
1. Liu, Y.; Liang, P.; Guo, L. Talanta 2005
2. Becker, J. S.; Matusch, A.; Depboylu, C.; Dobrowolska, J.; Zoriy, M.
V. Anal. Chem. 2007 79, 6074–6080.
3. Gonzales, A. P. S.; Firmino, M. A.; Nomura, C. S.; Rocha, F. R. P.;
Oliveira, P. V.; Gaubeur, I. Anal. Chim. Acta 2009 636, 198-204.
4. Oztekin, Y.; Yazicigil, Z.; Ramanaviciene, A.; Ramanavicius, A.
Talanta 2011 85, 1020-1027.
5. Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev. 2008
517-1549.
6. Du, J.; Hu, M.; Fan, J.; Peng, X. Chem. Soc. Rev. 2012
535.
7. Tsai, C. Y.; Lin, Y. W. Analyst 2013
8. Varnes, A. W.; Dodson, R. B.; Wehry, E. L. J. Am. Chem. Soc. 1972
, 946-950.
9. Turel, M.; Duerkop, A.; Yegorova, A.; Scripinets, Y.; Lobnik, A.;
Samec, N. Anal. Chim. Acta 2009 644, 53-60.
0. Khatua, S.; Choi, S. H.; Lee, J.; Huh, J. O.; Do, Y.; Churchill, D. G.
Inorg. Chem. 2009 48, 1799-1801.
1. Chen, H. Q.; Liang, A. N.; Wang, L.; Liu, Y.; Qian, B. B. Microchim.
Acta 2009 164, 453-458.
2. Erdemir, S.; Malkondu, S. J. Lumin. 2015
3. Yu, C. W.; Zhang, J.; Wang, R.; Chen, L. X. Org. Biomol. Chem.
010 , 5277-5279.
,
7
, 889-
8
4
5
6
.
.
.
, 70, 5494-5498.
,
,
4
, 176-
1
7
8
9
.
.
.
, 17, 111-113.
,
116, 1081-1084.
,
3
1
,
5
1
1
, 68, 25-30.
,
1
1
1
1
,
,
,
108
,
1
,
41, 4511-
4
1
1
, 138, 1232-1238.
,
9
4
1
2
2
,
,
Figure 9. (a) Rational changes in both excimer and monomer
emission intensities of a solution obtained from a mixture of MAB
,
2
2
, 158, 86-90.
2
5.0 µM) with Cu (2.0 equiv) as a function of water content in
+
(
o
E M
MeCN (λex = 388 nm) at 20 C. (b) Changes in the I /I ratio
2
, 8
represented by the excimer intensities at 594 nm and the monomer
intensities at 508 nm during the disassociation of excimer species to
monomers. Inset: Plot of the decreasing excimer emission at 594 nm
and the linear increase of monomer emission at 508 nm as the water
content increases.
24. Lee, M. H.; Kim, H. J.; Yoon, S.; Park, N.; Kim, J. S. Org. Lett. 2008
10, 213-216.
,
25. Hu, Z. Q.; Wang, X. M.; Feng, Y. C.; Ding, L.; Lu, H. Y. Dyes
Pigments 2011 88, 257-261.
6. De Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J.
M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997
, 1515-1566.
7. Valeur, B.; Leray, I. Coord. Chem. Rev. 2000
,
2
,
9
7
In summary, a novel anthracene-based, highly selective
fluorescent receptor has been synthesized through a simple
synthetic route, and its sensing ability for a wide range of metal
2
,
205, 3-40.
28. Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni, N. Coord. Chem.
Rev. 2000 205, 59-83.
29. Xu, Z.; Yoon, J.; Spring, D. R. Chem. Commun. 2010
30. Baek, K.; Eom, M. S.; Kim, S.; Han, M. S. Tetrahedron Lett. 2013
, 1654-1657.
1. Ingale, S. A.; Seela, F. J. Org. Chem. 2012
32. Nishimura, G.; Maehara, H.; Shiraishi, Y.; Hirai, T. Chem. Eur. J.
2008 14, 259-271.
3. Huang, X. H.; He, Y. B.; Hu, C. G.; Chen, Z. H. Eur. J. Org. Chem.
009, 1549-1553.
4. Huang, X. H.; Lu, Y.; He, Y. B.; Chen, Z. H. Eur. J. Org. Chem.
010, 1921-1927.
,
+
+
+
2+
2+
2+
2+
2+
2+
3+
2+
, 46, 2563-2565.
ions (Li , Na , Cs , Mg , Ca , Sr , Ba , Mn , Fe , Fe , Co ,
2+
2+
+
2+
2+
2+
3+
Ni , Cu , Ag , Zn , Cd , Hg , Al and Pb ) has been
2+
,
5
4
2
+
explored. MAB exhibits high selectivity and sensitivity for Cu
3
, 77, 9352-9356.
in the presence of various metal ions with a significant emission
enhancement via unique copper(II)-directed static excimer
formation. The basis of the excimer formation has been
investigated and found to be static in nature from a survey of the
excitation and absorption spectra. The results demonstrate that
disassociation of the excimer species to monomers is caused by
the temperature and solvent fraction. This dissociation process
enables MAB to be used as a temperature and solvent sensor.
The Job’s plot and mole-ratio curves reveal a 1:2 (M:L)
stoichiometry. MAB exhibits a high sensing index value of 14.8
,
3
3
2
2
35. Sarkar, S.; Roy, S.; Sikdar, A.; Saha, R. N.; Panja, S. S. Analyst 2013
138, 7119-7126.
,
3
6. Lin, W.; Yuan, L.; Feng, J. Eur. J. Org. Chem. 2008
7. Jung, H. S.; Park, M.; Han, D. Y.; Kim, E.; Lee, C.; Ham, S.; Kim, J.
S. Org. Lett. 2009 11, 3378-3381.
8. Kim, H. J.; Hong, J.; Hong, A.; Ham, S.; Lee, J. H.; Kim, J. S. Org.
Lett. 2008 10, 1963-1966.
39. Praveen, L.; Babu, J.; Reddy, M. L. P.; Varma, R. L. Tetrahedron
Lett. 2012 53, 3951-3954.
0. Xu, Z. Kim, S. Lee, K.-H. Yoon, J. Tetrahedron Lett. 2007
800.
, 22, 3821-3825.
3
,
3
2
+
for Cu ions. The detection limit is sufficiently low to determine
,
2
+
micromolar levels of Cu ions. The present study is a good
example of a receptor in which the rational conversion of
excimer species to monomers can be monitored distinctly.
,
4
, 48, 3797-
3