T. Wagner et al.
1
88
Finally, the stability of
Re-4 was investigated in fetale Conflict of Interest
bovine serum, a medium that provides a reasonable facsimile
of the in vivo environment. Perhaps not surprisingly, the
The authors did not report any conflict of interest.
1
88
stability of
Re-4 in FBS was similar to that in PBS. Here,
almost complete decomposition of the rhenium carbene References
complex was observed within the first hour of incubation
[
[
1] R. K. Hom, J. A. Katzenellenbogen, Nucl. Med. Biol. 1997, 24, 485–498.
2] S. Jürgens, W. A. Herrmann, F. E. Kühn, J. Organomet. Chem. 2014,
751, 83–89.
3] a) J. R. Dilworth, S. J. Parrott, Chem. Soc. Rev. 1998, 27, 43–55;
b) W. A. Volkert, T. J. Hoffman, Chem. Rev. 1999, 99, 2269–2292.
4] a) K. A. David, M. I. Milowsky, L. Kostakoglu, S. Vallabhajosula,
S. J. Goldsmith, D. M. Nanus, N. H. Bander, Clin. Genitourin. Cancer
2006, 4, 249–256; b) E. I. van Vliet, J. J. M. Teunissen, B. L. R. Kam,
M. de Jong, E. P. Krenning, D. J. Kwekkeboom, Neuroendocrinology
2013, 97, 74–85.
5] E. Deutsch, K. F. Libson, J.-L. Vanderheyden, A. R. Ketring, H. R. Maxon,
Nucl. Med. Biol. 1986, 13, 465–477.
6] W.-Y. Lin, C.-P. Lin, S.-J. Yeh, B.-T. Hsieh, Z.-T. Tsai, G. Ting, T.-C. Yen,
S.-J. Wang, F. Knapp, M. Stabin, Eur. J. Nucl. Med. 1997, 24, 590–595.
7] a) A. R. Ketring, Nucl. Med. Biol. 1987, 14, 223–232. b) P. G. Abrams,
A. R. Fritzberg, Radioimmunotherapy of Cancer, Marcel Dekker,
New York, 2000.
(
Figure 5(C)). In addition to potentially coordinating anions,
FBS contains a variety of biomacromolecules, which may
undergo nucleophilic reactions with the metal center
resulting in the decomposition of the complex. In contrast to
[
[
1
88
PBS, broad radioactive peaks were detected when
Re-4 was
dissolved in FBS. These might indicate the formation of adducts
1
88
of Re metal centers with biomolecules, ultimately resulting in
1
88
the generation of
Figure 5(C)).
Re-perrhenate (as observed via HPLC;
[
[
[
Conclusion
The principal aims of this study were to develop
a
methodology for the synthesis of radioactive, organometallic
1
88
[8] a) E. Torres-Garcia, G. Ferro-Flores, C. Arteaga de Murphy, L. Correá-
Gonzales, P. A. Pichardo-Romero, Arch. Med. Res. 2008, 39, 100–109;
b) L. Torres, M. Coca, J. Batista, A. Casaco, G. Lopez, I. Garcia, A. Perera,
Y. Pena, A. Hernandez, Y. Sanchez, S. Romero, R. Leyva, A. Prats, R.
Fernandez, Nucl. Med. Commun. 2008, 29, 66–75.
NHC complexes of rhenium ( Re-4) and to assess the
1
86/188
viability of NHCs as chelation architectures for
Re-
labeled radiopharmaceuticals. Unfortunately, as we have
1
88
already discussed, the stability of
Re-4 under physiological
[
9] K. C. Shin, J. C. Lee, H. J. Choi, J. M. Jeong, M. Son, Y. J. Lee, E. B. Lee,
S. H. Hong, Y. W. Song, Nucl. Med. Commun. 2007, 28, 239–244.
conditions is too low for the complex to be of any
meaningful use as a component of a radiopharmaceutical.
Importantly, however, the synthetic method developed to
[
10] P. Bernal, J.-L. Raoul, G. Vidmar, E. Sereegotov, F. X. Sundram,
A. Kumar, J. M. Jeong, P. Pusuwan, C. Divgi, P. Zanzonico, J. Stare,
J. Buscombe, C. T. T. Minh, M. M. Saw, S. Chen, R. Ogbac, A. K. Padhy,
Int. J. Radiat. Oncol. 2007, 69, 1448–1455.
11] K. Liepe, R. Hliscs, J. Kropp, T. Grüning, R. Runge, R. Koch, F. F. Knapp,
W.-G. Franke, Canc. Biother. Rad. 2000, 15, 261–265.
12] a) M. Eisenhut, Int. J. Appl. Radiat. Isot. 1982, 33, 99–103;
b) H. R. Maxon, E. A. Deutsch, S. R. Thomas, K. F. Libson,
S. J. Lukes, C. C. Williams, S. Ali, Radiology 1988, 166, 501–507.
13] J. Singh, K. Reghebi, C. R. Lazarus, S. E. M. Clarke, A. P. Callahan,
F. F. Knapp, P. J. Blower, Nucl. Med. Commun. 1993, 14, 197–203.
14] A. Bao, B. Goins, R. Klipper, G. Negrete, W. T. Phillips, J. Nucl. Med.
1
88
make
the synthesis of both carrier-free and carrier-added
Re-4 is a facile and straightforward approach for
1
88
Re-
[
NHC complexes. Ultimately, carbenes can be envisioned to
be novel and viable ligands for the selective and stable
[
1
86
188
chelation of both
Re and
Re, and this methodological
work appears to be an important first step toward this goal.
Naturally, more work has to be invested in the development of
carbene ligands that confer greater stability under physiological
environments. Particularly important will be the development of
[
[
2
003, 44, 1992–1999.
ligands that stabilize the dioxorhenium(V) core, preventing both [15] J. M. Jeong, Y. J. Kim, Y. S. Lee, J. I. Ko, M. Son, D. S. Lee, J.-K. Chung,
J. H. Park, M. C. Lee, Nucl. Med. Biol. 2001, 28, 197–204.
16] S. Seifert, T. Heinrich, C. Jentschel, C. Smuda, R. Bergmann, H.-J.
Pietzsch, Bioconjugate Chem. 2006, 17, 1601–1606.
17] G. W. M. Visser, M. Gerretsen, J. D. M. Herscheid, G. B. Snow, G. van
Dongen, J. Nucl. Med. 1993, 34, 1953–1963.
reduction and oxidation under physiological conditions. One
[
potential route towards these ligand systems could be the use
of porphyrin-like carbene systems similar to those published by
[
4
3
44
45
Alcalde et al., Hahn et al., and McKie et al. These
polydentate carbene ligands may exhibit greater kinetic and [18] a) S. Guhlke, A. Schaffland, P. O. Zamora, J. Sartor, D. Diekmann,
H. Bender, F. F. Knapp, H. J. Biersack, Nucl. Med. Biol. 1998, 25,
thermodynamic stability with the metal and, furthermore, limit
the accessibility of the metal center to solvent molecules,
thereby reducing the likelihood of displacement of the ligands
6
21–631; b) K. Ogawa, T. Mukai, Y. Arano, M. Ono, H. Hanaoka,
S. Ishino, K. Hashimoto, H. Nishimura, H. Saji, Bioconjugate Chem.
005, 16, 751–757.
2
and the oxidation of the metal center. Overall, it is our hope that [19] a) K.-T. Chen, T.-W. Lee, J.-M. Lo, Nucl. Med. Biol. 2009, 36, 355–361;
b) K. Ogawa, H. Kawashima, S. Kinuya, K. Shiba, M. Onoguchi,
H. Kimura, K. Hashimoto, A. Odani, H. Saji, Ann. Nucl. Med. 2009,
the pursuit of novel ligands for rhenium will result in the
186/188
development of stable and functionalizable
Re chelators,
2
3, 843–848; c) D. Satpati, A. Korde, K. Kothari, H. D. Sarma,
which will in turn broaden the scope and applicability of these
radioisotopes in the clinic.
M. Venkatesh, S. Banerjee, Canc. Biother. Rad. 2008, 23, 741–748;
d) C. A. Kluba, T. L. Mindt, Molecules 2013, 18, 3206–3226.
20] J. Yu, U. O. Häfeli, J. Xia, S. Li, M. Dong, D. Yin, X. Wang, Nucl. Med.
Commun. 2005, 26, 453–458.
21] P. P. Venkatesan, S. Shortkroff, M. R. Zalutsky, C. B. Sledge, Nucl. Med.
Biol. 1990, 17, 357–362.
[
[
Acknowledgements
The authors thank the Radiochemistry and Molecular Imaging [22] a) S.-J. Wang, W.-Y. Lin, B.-T. Hsieh, L.-H. Shen, Z.-T. Tsai, G. Tinge,
Probes Core at Memorial Sloan-Kettering Cancer Center for their
support (P30 CA008748). The authors further thank Prof. Jason S.
Lewis and Dr. Carlos Perez-Medina for the helpful discussions as
well as Dr. NagaVaraKishore Pillarsetty for critical revision of the
manuscript. Finally, the authors thank the NIH (K25 EB016673 for
TR and 5 SC1 CA138177 for LF), the Bayerische Forschungsallianz
F. Knapp, Eur. J. Nucl. Med. 1995, 22, 505–507; b) J. M. Jeong,
Y. J. Lee, Y. J. Kim, Y. S. Chang, D. S. Lee, J.-K. Chung, Y. W. Song,
M. C. Lee, Appl. Radiat. Isot. 2000, 52, 851–855.
[
23] A. Garcia-Burillo, I. Roca Bielsa, O. Gonzalez, C. Zafon, M. Sabate,
J. Castellvi, X. Serres, C. Iglesias, R. Vilallonga, E. Caubet, J. Fort,
J. Mesa, M. Armengol, J. Castell-Conesa, Eur. J. Nucl. Med. Mol.
Imaging 2013, 40, 1645–1655.
24] U. Veronesi, G. Paganelli, G. Viale, V. Galimberti, A. Luini, S. Zurrida,
C. Robertson, V. Sacchini, P. Veronesi, E. Orvieto, C. De Concetta,
M. Intra, G. Tosi, D. Scarpa, J. Natl. Cancer Inst. 1999, 91, 368–373.
(
BayIntAn_TUM_2012_43 for TW), as well as the Nanotechnology
Center of Memorial Sloan-Kettering Cancer Center (for TR) for their
generous funding.
[
www.jlcr.org
Copyright © 2014 John Wiley & Sons, Ltd.
J. Label Compd. Radiopharm 2014, 57 441–447