Journal of Agricultural and Food Chemistry
Article
(9) Zhan, Y.; Jia, G.; Wu, D.; Xu, Y.; Xu, L. Design and synthesis of a
gossypol derivative with improved antitumor activities. Arch. Pharm.
(Weinheim) 2009, 342, 223−229.
(10) Arnold, A. A.; Aboukameel, A.; Chen, J.; Yang, D.; Wang, S.; Al-
Katib, A.; Mohammad, R. M. Preclinical studies of apogossypolone: a
new nonpeptidic pan small-molecule inhibitor of Bcl-2, Bcl-XL and
Mcl-1 proteins in follicular small cleaved lymphoma model. Mol.
Cancer 2008, 7, 20−30.
(11) Bottger, G. T.; Sheehan, E. T.; Lukefahr, M. J. Relation of
gossypol content of cotton plants to insect resistance. J. Econ. Entomol.
1964, 57, 283−285.
(12) Mellon, J. E.; Cotty, P. J.; Dowd, M. K. Effects of optically active
gossypol on conidia germination and growth of Aspergillus flavus.
Beltwide Cotton Conferences; Nashville, TN, 2003; pp A29−A32.
(13) Mellon, J. E.; Zelaya, C. A.; Dowd, M. K. Inhibitory effects of
gossypol-related compounds on growth of Aspergillus flavus. Lett. Appl.
Microbiol. 2011, 52, 406−412.
(14) Klich, M. A. Biogeography of Aspergillus species in soil and litter.
Mycologia 2002, 94, 21−27.
(15) CAST (Council for Agriculture Science and Technology).
Mycotoxin risks in plant, animal and human systems. 2003. CAST, IA
Task Force Report 139.
(16) Dowd, M. K.; Pelitire, S. M. Recovery of gossypol acetic acid
from cottonseed soapstock. Ind. Crops Prod. 2001, 14, 113−123.
(17) Thom, C.; Raper, K. B. Manual of the Aspergilli; The Williams &
Wilkins Co./Waverly Press, Inc.: Baltimore, MD, 1945; pp 32−33.
(18) Bonvehi, J. S. Occurrence of ochratoxin A in cocoa products and
chocolate. J. Agric. Food Chem. 2004, 52, 6347−6352.
(19) Young, H. D. Statistical treatment of experimental data; McGraw-
Hill: New York, 1962; pp 96−101.
(20) Klich, M. A.; Tiffany, L. H.; Knaphus, G. Ecology of the
Aspergilli of soils and litter (Chapter 15). In Aspergillus: biology and
industrial applications; Bennett, J. W., Klich, M. A., Eds.; Butterworth-
Heinemann: 1992; pp 329−353.
(21) Domsch, K. H.; Gams, W.; Anderson, T.-H. Compendium of soil
fungi; IHW-Verlag: 1980.
activity against a collection of fungal plant pathogens is
consistent with this hypothesis.
Although gossypol and its derivatives have demonstrated a
wide range of bioactivity, it has yet to find a commercial
purpose that would justify the cost of its recovery from cotton
plant tissues. This application deficit may be due to the lack of
sufficient activity to compete with current products and
unwanted side effects, i.e., insufficient therapeutic index, or
complicating physical properties, e.g., instability to light and
nonspecific reactivity with cellular components. The com-
pounds evaluated in this report have not been well studied for
antifungal activity. Given the ability of gossypol to inhibit fungal
growth, the compound might be useful as a seed coating to
impede fungal contamination of germinating seedlings. These
compounds, as a class, tend to be sensitive to UV radiation, and
this type of application might overcome this complication.
Since gossypolone and apogossypolone exhibit some improved
inhibitory activity compared with gossypol, testing these
compounds for this purpose might also be warranted. Proof
of the efficacy of these agents for this application, however, will
require further investigation.
AUTHOR INFORMATION
■
Corresponding Author
*Tel: (504)286-4358. Fax: (504) 286-4419. E-mail: Jay.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The assistance of C. H. Carter-Wientjes in the acquisition of
ochratoxin A data and of D. Boykin in the programming of the
statistical analyses is greatly appreciated. Mention of trade
names or commercial products in this paper is solely for the
purpose of providing specific information and does not imply
recommendation or endorsement by the U.S. Department of
Agriculture.
(22) Tanphaichitr, N.; Namking, M.; Tupper, S.; Hansen, C.; Wong,
P. T. T. Gossypol effects on the structure and dynamics of
phospholipid bilayers: a FT-IR study. Chem. Phys. Lipids 1995, 75,
119−125.
́
(23) Cuellar, A.; Ramírez, J. Further studies on the mechanism of
action of gossypol on mitochondrial membrane. Int. J. Biochem. 1993,
25, 1149−1155.
(24) Darvill, A. G.; Albersheim, P. Phytoalexins and their elicitors: a
defense against microbial infection in plants. Annu. Rev. Plant Physiol.
1984, 35, 243−275.
REFERENCES
■
(1) National Cotton Variety Tests; U.S. Dept. of Agriculture,
Agricultural Research Service, Crop Genetics & Production Research
Unit: Stoneville, MS, 2001.
(25) De Peyster, A.; Hyslop, P. A.; Kuhn, C. E.; Sauerheber, R. D.
Membrane structural/functional perturbations induced by gossypol.
Biochem. Pharmacol. 1986, 35, 3293−3300.
(2) Bernardi, L. C.; Goldblatt, L. A. Gossypol. In Toxic Constituents of
Plant Foodstuffs, 2nd ed.; Liener, I. E., Ed.; Academic Press: New York,
1980; pp 183−237.
́ ́
(26) Perez, A.; Ojeda, P.; Valenzuela, X.; Ortega, M.; Sanchez, C.;
Ojeda, L.; et al. Endofacial competitive inhibition of the glucose
transporter 1 activity by gossypol. Am. J. Physiol. 2009, 297, C86−C93.
(27) Chanda, A.; Roze, L. V.; Kang, S.; Artymovich, K. A.; Hicks, G.
R.; Raikhel, N. V.; Calvo, A. M.; Linz, J. E. A key role for vesicles in
fungal secondary metabolism. Proc. Natl. Acad. Sci. U.S.A. 2009, 106,
19533−19538.
(3) Wang, X.; Howell, C. P.; Chen, F.; Yin, J.; Jiang, Y. Gossypola
polyphenolic compound from cotton plant. Adv. Food Nutr. Res. 2009,
58, 215−263.
(4) Haas, R. H.; Shirley, D. A. The oxidation of gossypol. II.
Formation of gossypolone with ferric chloride. J. Org. Chem. 1965, 30,
4111−4113.
(28) Chanda, A.; Roze, L. V.; Linz, J. E. A possible role for exocytosis
in aflatoxin export in Aspergillus parasiticus. Eukarotic Cell 2010, 9,
1724−1727.
(29) Veech, J. A.; McClure, M. A. Terpenoid aldehydes in cotton
roots susceptible and resistant to the root-knot nematode, Meloidogyne
incognita. J. Nematol. 1977, 9, 225−229.
(30) Frankfater, C. R.; Dowd, M. K.; Triplett, B. A. Effect of elicitors
on the production of gossypol and methylated gossypol in cotton hairy
roots. Plant Cell, Tissue Organ Cult. 2009, 98, 341−349.
(5) Gilbert, N. E.; O’Reilly, J. E.; George-Chang, C. J.; Lin, Y. C.;
Brueggemeier, R. W. Antiproliferative activity of gossypol and
gossypolone on human breast cancer cells. Life Sci. 1995, 57, 61−67.
(6) Blackstaffe, L.; Shelley, M. D.; Fish, R. G. Cytotoxicity of
gossypol enantiomers and its quinone metabolite gossypolone in
melanoma cell lines. Melanoma Res. 1997, 7, 364−372.
(7) Dao, V.-T.; Gaspard, C.; Mayer, M.; Werner, G. H.; Nguyen, S.
N.; Michelot, R. J. Synthesis and cytotoxicity of gossypol related
compounds. Eur. J. Med. Chem. 2000, 35, 805−813.
(8) Adams, R.; Butterbaugh, D. J. Structure of gossypol. X.
Apogossypol and its degradation products. J. Am. Chem. Soc. 1938,
60, 2174−2180.
2745
dx.doi.org/10.1021/jf2044394 | J. Agric. Food Chem. 2012, 60, 2740−2745