DBG Williams et al. / Inorganic Chemistry Communications 10 (2007) 538–542
541
[15] (a) A. Shiotani, H. Schmidbaur, J. Am. Chem. Soc. 92 (1970) 7003;
(b) L.G. Kuz’mina, N.V. Dvortsova, M.A. Porai-Koshits, E.I.
Smyslova, K.I. Grandberg, E.G. Perevalova, Organomet. Chem.
USSR 2 (1989) 711;
The solid state structure of the di-gold(I) mixed halogen/
organometallic complex 5 is shown in Fig. 4. The P–Au–Cl
angle in 5 (169.68ꢁ) is significantly more bent than between
the same three atoms in complex 4 (175.26ꢁ). This may rea-
sonably be attributed to a steric bulk introduced to the sys-
tem by the additional Au-bound aromatic ring in 5.
In conclusion, we have demonstrated that P–N biden-
tate ligands may bind to either one or two Au(I) ions,
depending on the system in question. The Au atoms in
dinuclear complexes manifested intramolecular Au–Au
interactions, as well as intermolecular Au–Au interactions
in one instance. We have further shown a rare if not unique
Au–Au exchange reaction for this system, replacing inor-
ganic gold(I) for an organogold analogue.
(c) J.D.E.T. Wilton-Ely, H. Ehlich, A. Schier, H. Schmidbaur, Helv.
Chim. Acta 84 (2001) 3216;
(d) A. Kolb, P. Bissinger, H. Schmidbaur, Inorg. Chem. 32 (1993)
5132, and references therein..
[16] S.E. Thwaite, A. Schier, H. Schmidbaur, Inorg. Chim. Acta 357
(2004) 1549.
[17] A. Grohmann, J. Riede, H. Schmidbaur, Z. Naturforsch. B 47 (1992)
1255, and references therein..
[18] (a) J. Stra¨hle, in: H. Schmidbaur (Ed.), Gold: Progress in Chemistry
Biochemistry and Technology, John Wiley and Sons, Chichester,
1999, p. 311;
(b) H. Schmidbaur, A. Kolb, P. Bissinger, Inorg. Chem. 31 (1992) 4370;
(c) Y. Inoguchi, B. Milewski-Mahrla, H. Schmidbaur, Chem. Ber. 115
(1982) 3085;
(d) M.E. Olmos, A. Schier, H. Schmidbaur, Z. Natuforsch. B 52 (1997)
203.
1. Supplementary material
[19] Synthesis of 3: To a stirred solution of 1b (0.100 g, 0.290 mmol) in
diethyl ether (20 mL) was added 1 M equivalent of ClAu(tht) (0.093 g,
0.290 mmol) dissolved in chloroform (5 mL). The mixture was stirred
at room temperature for 5 min during which time a precipitate
formed. The solvent was decanted and the precipitate washed with
diethyl ether (5 · 5 mL) and hexane (3 · 5 mL) and dried in vacuo.
Yield (0.125 g, 0.216 mmol) 74%. M.p. 192–194 ꢁC (white powder),
208–210 ꢁC (crystals from layered CHCl3/hexane). 1H NMR
(300 MHz, CDCl3): dH 8.67 (d, 1H, J = 1.8 Hz, imine-H), 7.86
(ddd, 1H, J = 7.6, 4.4 and 1.4 Hz, aromatic), 7.61–7.38 (m, 11H,
aromatic), 7.31 (tt, 1H, J = 7.7 and 1.7 Hz, aromatic), 6.77 (ddd, 1H,
J = 13.2, 7.8 and 1.2 Hz, aromatic), 0.99 (s, 9H, C(CH3)3). 13C NMR
(75 MHz, CDCl3)dC 153.7 (d, 1C, J = 6.5 Hz, imine-C), 139.3 (d, 1C,
J = 7.1 Hz, C1), 134.3 (d, 4 C, J = 12.7 Hz, ortho-C phenyl), 134.1 (d,
1C, J = 7.1 Hz), 131.7 (d, 1C, J = 2.6 Hz, C5), 131.5 (d, 2C,
J = 2.6 Hz, para-C phenyl), 131.2 (d, 1C, J = 8.6 Hz), 130.0 (d, 2C,
J = 63.2 Hz, ipso-C phenyl), 129.7 (d, 1C, J = 10.5 Hz), 129.0 (d, 4C,
J = 12.0 Hz, meta-C phenyl), 127.2 (d, 1C, J = 55.1 Hz, C2), 58.6 (s,
1C, C(CH3)3), 29.6 (s, 3C, C(CH3)3). 31P NMR (121 MHz, CDCl3) dP
31.0 (s, 1P). FAB-MS: m/z 577 [M + 1]+.
CCDC 624478, 624479 and 624480 contain the
supplementary crystallographic data for this paper. These
Crystallographic Data Centre, 12 Union Road, Cambridge
CB2 1EZ, UK; fax: +44 1223 336 033; or e-mail:
Acknowledgement
The authors would like to thank Project AuTEK (Min-
tek and Harmony Gold) for permission to publish the re-
sults and financial support.
References
[1] B.M. Wile, R.J. Burford, R. McDonald, M.J. Ferguson, M. Stradi-
otto, Organometallics 25 (2006) 1028.
[20] Preparation of 4: Similar to 3 but using 2 equivalents of ClAu(tht).
White powder. Yield: (0.160 g) 67% yield. M.p. 124–126 ꢁC (powder),
241–243 ꢁC (crystals from CHCl3/hexane). 1H NMR (300 MHz,
CDCl3) dH 7.65 (m, 1H, aromatic), 7.57–7.42 (m, 11H, aromatic), 7.20
(tt, 1H, J = 7.5 and 1.5 Hz, aromatic), 6.77 (ddd, 1H, J = 12.9, 7.8
and 1.2 Hz, aromatic), 4.09 (s, 2H, HNCH2R), 2.64 (pentet, 1H,
J = 6.2 Hz, CH(CH3)2), 1.30 (broad s, 1H, NH), 0.84 (d, 6H,
J = 6.3 Hz, CH(CH3)2). 13C NMR (75 MHz, CDCl3) dC 144.7 (d,
1C, J = 11.0 Hz, C1), 134.4 (d, 4C, J = 14.0 Hz, ortho-C phenyl),
133.4 (d, 1C, J = 8.0 Hz), 131.9 (d, 3C, J = 2.5 Hz, para-C phenyl,
C5), 130.8 (d, 1C, J = 9.0 Hz), 129.3 (d, 4C, J = 12.0 Hz, meta-C
phenyl), 129.0 (d, 2C, J = 62.6 Hz, ipso-C phenyl), 127.2 (d, 1C,
J = 10.0 Hz), 126.5 (d, 1C, J = 59.1 Hz, C2), 50.4 (d, 1C, J = 11.6 Hz,
HNCH2), 48.8 (s, 1C, CH(CH3)2), 22.7 (s, 2C, CH(CH3)2). 31P NMR
(121 MHz, CDCl3) dP 26.0 (s, 1P). FAB-MS: m/z 566 [M-AuCl]+.
Preparation of 5: To a stirred solution of C6F5Au(tht) (0.001 g,
0.0022 mmol) dissolved in dichloromethane (1 mL) was added in a
drop-wise manner one molar equivalent of 4 (0.00175 g, 0.0022 mmol)
dissolved in dichloromethane (0.5 mL). The mixture was stirred at
room temperature for 1 h after which the solvent was evaporated to
ca. 0.5 mL. Single crystals suitable for an X-ray analysis could be
obtained by the layering of the solution with hexane. Yield (0.00178 g,
0.00192 mmol) 87%. M.p. 168–170 ꢁC (crystals from DCM/hexane).
FAB-MS: m/z 894.3 [M-Cl]+.
[2] R.C.J. Atkinson, V.C. Gibson, N.J. Long, Chem. Soc. Rev. 33 (2004)
313.
[3] P.J. Guiry, C.P. Saunders, Adv. Synth. Catal. 346 (2004) 497.
[4] C. Muller, R.J. Lachicotte, W.D. Jones, Organometallics 21 (2002) 1118.
[5] J. Andrieu, J.M. Camus, P. Richard, R. Poli, L. Gonsalvi, F. Vizza,
M. Peruzzini, Eur. J. Inorg. Chem. 1 (2006) 51.
[6] E.J. Zijp, J.I. van der Vlugt, D.M. Tooke, A.L. Spek, D. Vogt, J.
Chem. Soc., Dalton Trans. 3 (2005) 512.
[7] C.F. Shaw Jr., Chem. Rev. 99 (1999) 2589.
[8] C.F. Shaw Jr., in: N.P. Farrell (Ed.), Uses of Inorganic Chemistry in
Medicine, RSC, UK, 1999 (Chapter 3).
[9] (a) M.V. Baker, P.J. Barnard, S.J. Berners-Price, S.K. Brayshaw, J.L.
Hickey, B.W. Skelton, A.H. White, J. Chem. Soc., Dalton Trans. 30
(2004) 3708;
(b) P.J. Barnard, M.V. Baker, S.J. Berners-Price, D.A. Day, J. Inorg.
Biochem. 98 (2004) 1642.
[10] S.J. Berners-Price, R.K. Johnson, A.J. Giovenella, L.F. Faucette,
C.K. Mirabelli, P.J. Sadler, J. Inorg. Biochem. 33 (1988) 285.
[11] K. Nomiya, S. Yamamoto, R. Noguchi, H. Yokoyama, N.C. Kasuga,
K. Ohyama, C. Kato, J. Inorg. Biochem. 95 (2003) 208.
[12] A. Laguna, in: H. Schmidbaur (Ed.), Gold: Progress in Chemistry
Biochemistry and Technology, John Wiley and Sons, Chichester,
1999, p. 349.
[21] R. Uson, A. Laguna, M. Laguna, Inorg. Synth. 26 (1989) 85–91.
[22] The intensity data were collected at 173 K on a Bruker SMART 1 K
CCD diffractometer with area detector using graphite monochro-
[13] M.J. McKeage, L. Maharaj, S.J. Berners-Price, Coord. Chem. Rev.
232 (2002) 127.
[14] R.J. Bowen, M.A. Fernandez, P.W. Gitari, M. Layh, R.M. Moutlo-
ani, Eur. J. Inorg. Chem. 10 (2005) 1955.
˚
mated Mo Ka radiation (k = 0.71073 A, 50 kV, 30 mA). Data