M. Chatenet et al. / Electrochimica Acta 54 (2009) 4426–4435
4435
Table 4
Examples of n values above 8 reported in the literature for sodium hydroxide + borohydride electrolytic solutions.
Reference
[NaOH], M
[NaBH4], M
T, ◦
C
DBH
−
n
Method of
4
determination
[39]
[42]
2.5
2
0.27
0.3
25
25
1.68 × 10−5
4–9.7
12
Levich
Levich
Not precised
tion, although we measured non-negligible differences, see Section
3.1) may also induce a non-negligible bias.
References
[1] S. Amendola, P. Onnerud, M.T. Kelly, M. Binder, Talanta 49 (1999) 267.
[2] S.C. Amendola, P. Onnerud, M.T. Kelly, P.J. Petillo, S.L. Sharp-Goldman, M. Binder,
J. Power Sources 84 (1999) 130.
5. Conclusions
[3] S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo, M. Binder,
J. Power Sources 85 (2000) 186.
Tetrahydroborate anion diffusion coefficients have been mea-
sured for a large panel of NaOH + NaBH4 electrolytic solutions
relevant to use in Direct Borohydride Fuel Cells (DBFC). The mea-
surements were achieved by the “transit-time technique” on gold
rotating ring-disk electrodes and verified using other classical tech-
niques reported in the literature. These classical techniques include
the Levich method and Electrochemical Impedance Spectroscopy
on a gold RDE, or chronoamperometry at a gold microdisk (UME).
The agreement between the four methods is generally good, pro-
vided they are undertaken in appropriate experimental conditions,
which is not always the case in the literature. For example, the
chronoamperometry at a gold microdisk/sphere may yield diffu-
sion coefficient values below what expected. We measured such
bias experimentally and explain it by the gradual formation of
some boron-oxide film (products of the BOR) and/or H2 bubbles
[4] S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer, M.T. Kelly, P.J.
Petillo, M. Binder, Int. J. Hydrogen Energy 25 (2000) 969.
[5] C. Kim, K.-J. Kim, M.Y. Ha, J. Power Sources 180 (2008) 154.
[6] R. Jamard, A. Latour, J. Salomon, P. Capron, A. Martinent-Beaumont, J. Power
Sources 176 (2008) 287.
[7] H. Cheng, K. Scott, J. Power Sources 160 (2006) 407.
[8] Z.P. Li, B.H. Liu, K. Arai, S. Suda, J. Alloys Compd. 404–406 (2005) 648.
[9] R.X. Feng, H. Dong, Y.D. Wang, X.P. Ai, Y.L. Cao, H.X. Yang, Electrochem. Commun.
7 (2005) 449.
[10] N.A. Choudhury, R.K. Raman, S. Sampath, A.K. Shukla, J. Power Sources 143
(2005) 1.
[11] R.K. Raman, N.A. Choudhury, A.K. Shukla, Electrochem. Solid State Lett. 7 (2004)
A488.
[12] M.M. Kreevoy, R.W. Jacobson, Ventron Alembic 15 (1979) 2.
[13] J.P. Elder, A.H. Hickling, Trans. Faraday Soc. 58 (1962) 1852.
[14] J.A. Gardiner, J.W. Collat, J. Am. Chem. Soc. 87 (1965) 1692.
[15] Y. Bai, C. Wu, F. Wu, B. Yi, Mater. Lett. 60 (2006) 2236.
[16] B.H. Liu, Z.P. Li, S. Suda, J. Electrochem. Soc. 150 (2003) A398.
[17] K. Wang, J. Lu, L. Zhuang, J. Electroanal. Chem. 585 (2005) 191.
[18] P. Krishnan, T.-H. Yang, S.G. Advani, A.K. Prasad, J. Power Sources 182 (2008)
106.
−
(as a result of some extent of BH4 heterogeneous hydrolysis on
gold) at the surface of the static gold microdisk. The presence of
such film/bubbles decreases the accessible geometric surface of the
electrode and hinders reactant access to the electrode. Thus, effi-
cient measurements of the borohydride diffusion coefficient are not
possible using chronoamperometry measurements at static UME,
unless one can assert that the electrode surface remains uncov-
ered by any BOR products or H2 bubbles, which is not easy and
usually not verified in the literature. When rotating electrodes are
employed, the solution convection at the electrode surface slows
down (if not prevents) such bothering film formation and H2 bub-
bles stagnation at the surface of the electrode. The RRDE technique
is also rather fast (which is an advantage, assuming that long-time-
experiments favor accumulation of boron-oxides at the vicinity of
the electrode surface) and only requires the knowledge of the solu-
tion viscosity (on the contrary to the Levich method, which also
requires n and [NaBH4] values to be known). Finally, as the mea-
sured parameter is the time for a perturbation to reach the ring
upon generation at the disk (through “free” solution), the RRDE
technique is not subjected to dramatic hindrance generated by the
possible existence of some boron-oxide film. Thanks to these great
advantages, the RRDE transit-time technique is the technique of
choice to measure the diffusion coefficients for the tetrahydrob-
orate anion. The values we found are ca. twice larger than those
previously reported in the literature (e.g. ca. 3 × 10−5 cm2 s−1 in
1 M NaOH + 0.01 M NaBH4 at 25 ◦C in the present study vs. ca.
1.6 × 10−5 cm2 s−1 in 1 M NaOH + 0.02 M NaBH4 at 30 ◦C in the lit-
[19] B.H. Liu, Z.P. Li, S. Suda, Electrochim. Acta 49 (2004) 3097.
[20] Z.P. Li, B.H. Liu, K. Arai, K. Asaba, S. Suda, J. Power Sources 126 (2004) 28.
[21] G. Denuault, M.V. Mirkin, A.J. Bard, J. Electroanal. Chem. 308 (1991) 27.
[22] R.L. Pecsok, J. Am. Chem. Soc. 75 (1953) 2862.
[23] F. Gan, D.T. Chin, J. Appl. Electrochem. 23 (1993) 452.
[24] J. Lozar, B. Bachelot, G. Falgayrac, A. Savall, Electrochim. Acta 43 (1998) 3293.
[25] M. Chatenet, M. Aurousseau, R. Durand, Ind. Eng. Chem. Res. 39 (2000) 3083.
[26] M. Chatenet, M. Aurousseau, R. Durand, Electrochim. Acta 45 (2000) 2823.
[27] S. Bruckenstein, G.A. Feldman, J. Electroanal. Chem. 9 (1965) 395.
[28] M. Chatenet, F. Micoud, I. Roche, E. Chainet, Electrochim. Acta 51 (2006) 5459.
[29] E. Gyenge, Electrochim. Acta 49 (2004) 965.
[30] Y. Okinaka, J. Electrochem. Soc. 120 (1973) 739.
[31] E. Levart, D. Schuhmann, J. Electroanal. Chem. 28 (1970) 45.
[32] C. Montella, J.-P. Diard, B. Le Gorrec, Exercices de cinétique électrochimique. II
Méthodes d’impédance, Hermann, Paris, 2005.
[33] M. Chatenet, B. Molina-Concha, J.-P. Diard, Electrochim. Acta 54 (2009) 1687.
[34] V.M.M. Lobo, J.L. Quaresma, Handbook of Electrolyte Solutions, Part A and B,
Elsevier, 1989, 2354 pp.
[35] D.R. Lide, in: D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 78th ed.,
CRC Press, New York, 1997.
[36] W.J. Albery, M.L. Hitchman, in: W.J. Albery, M.L. Hitchman (Eds.), Ring-Disk
Electrodes, Oxford University Press, London, 1971.
[37] I. Roche, E. Chainet, M. Chatenet, J. Vondrak, J. Phys. Chem. C 111 (2007)
1434.
[38] R.H. Perry, D.W. Green, in: Green (Ed.), Perry’s Chemical Engineers’ Handbook,
R.R. Donnelley and Sons Company, New York, 1997.
[39] H. Cheng, K. Scott, Electrochim. Acta 51 (2006) 3429.
[40] M. Chatenet, F.H.B. Lima, E.A. Ticianelli, Electrochem. Commun., submitted for
publication.
[41] M.V. Mirkin, H. Yang, A.J. Bard, J. Electrochem. Soc. 139 (1992) 2212.
[42] M.H. Atwan, C.L.B. Macdonald, D.O. Northwood, E.L. Gyenge, J. Power Sources
158 (2006) 36.
[43] D. Gervasio, M. Xu, E. Thomas, Properties of aqueous alkaline sodium borohy-
dride solutions and by-products formed during hydrolysis, in: Proceedings of
the NASA Fuel Cell Meeting, San Francisco, 2005.
[44] T.R. Burkholder, L. Andrews, J. Chem. Phys. 95 (1991) 8697.
[45] L. Andrews, T.R. Burkholder, J. Phys. Chem. 95 (1991) 8554.
[46] N.N. Greenwood, A. Earnshaw, in: N.N. Greenwood, A. Earnshaw (Eds.), Chem-
istry of the Elements, 1st ed., Pergamon Press Ltd., Oxford, 1984, p. 155.
[47] B. Molina Concha, M. Chatenet, C. Coutanceau, F. Hahn, Electrochem. Commun.
11 (2009) 223.
erature). The paper finally provides a whole set of DBH − values for
4
relevant anolyte compositions of DBFC, in the range 0.1–4 M NaOH,
10−3 to 10−2 M NaBH4 at temperature of 10, 20, 25 and 40 ◦C.
Acknowledgements
[48] D. Peak, G.W. Luther, D.L. Sparks, Geochim. Cosmochim. Acta 67 (2003)
2551.
This work was supported by the “Cluster Energie” of Région
Rhône-Alpes (France). M.C. thanks Eric Chainet for the gold depo-
sition at the Pt-Pt RRDE.