L. Rassaei et al. / Electrochimica Acta 54 (2009) 6680–6685
6685
under microwave conditions. The formation of the fibrous com-
ponents may be in part caused by the enhanced deposition of
colloidal titanium oxide material which could be enhanced by local
dieletrophoretic effects.
The hydrous titanium oxide films grown by electrodeposition
are X-ray amorphous and only after calcination at 500 ◦C can the
TiO2 (anatase) structure be clearly observed in the XRD pattern.
Unfortunately, the fibrous morphology of the deposit is destroyed
by heating already at 300 ◦C and the resulting films after calcination
are porous but more uniform (not shown). The crazing effect (see
Fig. 6B) which is associated with density changes during calcination
canbeavoidedwhenusingmicrowaveactivationduringdeposition.
[6] C. Gabriel, S. Gabriel, E.H. Grant, B.S.J. Halstead, D.M.P. Mingos, Chem. Soc. Rev.
27 (1998) 213.
[7] F. Marken, U.K. Sur, B.A. Coles, R.G. Compton, Electrochim. Acta 51 (2006) 2195.
[8] G.G. Wildgoose, N.S. Lawrence, B.A. Coles, L. Jiang, T.G.J. Jones, R.G. Compton,
Phys. Chem. Chem. Phys. 5 (2003) 4219.
[9] P. Gründler, G.U. Flechsig, Microchim. Acta 154 (2006) 175.
[10] A. Boika, A.S. Baranski, Anal. Chem. 80 (2008) 7392.
[11] B.A. Coles, M.J. Moorcroft, R.G. Compton, J. Electroanal. Chem. 513 (2001) 87.
[12] V. Climent, N. Garcia-Araez, R.G. Compton, J.M. Feliu, J. Phys. Chem. B 110 (2006)
21092.
[13] J.F. Smalley, L. Geng, A. Chen, S.W. Feldberg, N.S. Lewis, G. Cali, J. Electroanal.
Chem. 549 (2003) 13.
[14] F. Marken, Ann. Rep. Prog. Chem. Sect. C: Phys. Chem. 104 (2008) 124.
[15] L. Rassaei, R.G. Compton, F. Marken, J. Phys. Chem. C 113 (2009) 3046.
[16] M.J. Cass, N.W. Duffy, L.M. Peter, S.R. Pennock, S. Ushiroda, A.B. Walker, J. Phys.
Chem. B 107 (2003) 5857.
[17] U.K. Sur, F. Marken, N. Rees, B.A. Coles, R.G. Compton, R. Seager, J. Electroanal.
Chem. 573 (2004) 175.
[18] M.A. Ghanem, M. Thompson, R.G. Compton, B.A. Coles, S. Harvey, K.H. Parker,
D. O’Hare, F. Marken, J. Phys. Chem. B 110 (2006) 17589.
4. Conclusion
It has been shown that microwave enhanced electrodeposition
processes are observed when ITO-coated glass slides are employed
as electrodes. A flowing electrolyte system is necessary to stabilise
temperature gradients within the electrochemical cell and average
electrode temperatures of ca. 363 K were obtained. For both gold
and hydrous titanium oxide deposition, enhanced deposition rates
were observed. For the deposition of hydrous titanium oxide also
a morphology change to a more fibrous deposit was observed. In
future a wider range of thin film electrodes could be studied under
microwave conditions and the effects of electrode film thickness
and electrolyte concentration employed to improve the electrode-
position process. The deposition of a wider range of oxide materials
and in particular semiconducting materials could be studied to
establish applications for microwave effects during electrodepo-
sition.
[19] M.A. Ghanem, R.G. Compton, B.A. Coles, A. Canals, A. Vuorema, P. John, F.
Marken, Phys. Chem. Chem. Phys. 7 (2005) 3552.
[20] M.A. Ghanem, H. Hanson, R.G. Compton, B.A. Coles, F. Marken, Talanta 72 (2007)
66.
[21] F. Marken, Y.C. Tsai, A.J. Saterlay, B.A. Coles, D. Tibbetts, K. Holt, C.H. Goeting, J.S.
Foord, R.G. Compton, J. Solid State Electrochem. 5 (2001) 313.
[22] I. Zhitomirsky, J. Mater. Sci. 41 (2006) 8186.
[23] G.Z. Cao, D.W. Liu, Adv. Coll. Interface Sci. 136 (2008) 45.
[24] R. Baron, G.G. Wildgoose, R.G. Compton, J. Nanosci. Nanotechnol. 9 (2009) 2274.
[25] R.W. French, A.M. Collins, F. Marken, Electroanalysis 20 (2008) 2403.
[26] J. Burdick, E. Alonas, H.C. Huang, K. Rege, J. Wang, Nanotechnology 20 (2009)
065306.
[27] M. Schlesinger, M. Paunovic (Eds.), Modern Electroplating, Wiley, New York,
2000, p. 205.
[28] Y. Nakato, A. Tsumura, H. Tsubomura, J. Phys. Chem. 87 (1983) 2402.
[29] A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1 (2000) 1.
[30] L.M. Peter, Phys. Chem. Chem. Phys. 9 (2007) 2630.
[31] S. Cosnier, A. Senillou, M. Grätzel, P. Comte, N. Vlachopoulos, N.J. Renault, C.
Martelet, J. Electroanal. Chem. 469 (1999) 176.
[32] S. Kment, P. Kluson, V. Stranak, P. Virostko, J. Krysa, M. Cada, J. Pracharova, M.
Kohout, M. Morozova, P. Adamek, Z. Hubicka, Electrochim. Acta 54 (2009) 3352.
[33] Y.H. Liao, J.C. Chou, Mater. Chem. Phys. 114 (2009) 542.
[34] S. Karuppuchamy, N. Suzuki, S. Ito, T. Endo, Curr. Appl. Phys. 9 (2009) 243.
[35] E. Halary-Wagner, T. Bret, P. Hoffmann, Appl. Surf. Sci. 208–209 (2003) 663.
[36] C.C. Hu, C.C. Huang, K.H. Chang, Electrochem. Commun. 11 (2009) 434.
[37] E. Vigil, J.A. Ayllon, A.M. Peiro, R. Rodriguez-Clemente, X. Domenech, J. Peral,
Langmuir 17 (2001) 891.
Acknowledgement
The authors would like to thank the EPSRC for financial support
(EP/F025726/1).
[38] E. Vigil, B. Gonzalez, I. Zumeta, S. Docteur, A.M. Peiro, D. Gutierrez-Tauste, C.
Domingo, X. Domenech, J.A. Ayllon, J. Cryst. Growth 262 (2004) 366.
[39] I. Zumeta, B. Gonzalez, R. Espinosa, J.A. Ayllon, E. Vigil, Semicond. Sci. Technol.
19 (2004) L52.
[40] S. Cassaignon, M. Koelsch, J.P. Jolivet, J. Phys. Chem. Solids 68 (2007) 695.
[41] L. Kavan, B. Oregan, A. Kay, M. Grätzel, J. Electroanal. Chem. 346 (1993) 291.
[42] A. Manivannan, N. Spataru, K. Arihara, A. Fujishima, Electrochem. Solid State
Lett. 8 (2005) C138.
References
[1] G.A. Tompsett, W.C. Conner, K.S. Yngvesson, Chem. Phys. Chem. 7 (2006) 296.
[2] A. Loupy (Ed.), Microwaves in Organic Synthesis, Wiley-VCH, Weinheim, 2006.
[3] D.M.P. Mingos, D.R. Baghurst, Chem. Soc. Rev. 20 (1991) 1.
[4] H.M. Skip Kingston, S.J. Haswell (Eds.), Microwave-Enhanced Chemistry: Fun-
damentals, Sample Preparation, and Applications, American Chemical Society,
Washington, 1997.
[43] E.V. Milsom, A.M. Bond, A.P. O’Mullane, D. Elton, C.Y. Lee, F. Marken, Electro-
analysis 21 (2009) 41.
[5] I.J. Cutress, F. Marken, R.G. Compton, Electroanalysis 21 (2009) 113.