Self-Assembly of h-PAMAM/l-PAA in Water
J. Phys. Chem. B, Vol. 113, No. 22, 2009 7735
4. Conclusion
In conclusion, a novel kind of polymeric hollow spheres was
prepared successfully by the complex self-assembly of h-
PAMAM/l-PAA in aqueous solution. The morphology transition
of the self-assembled aggregates from solid particles to vesicles
could be realized by adjusting the solution pH. When the
solution pH was lower than 2.1, the assembled aggregates were
solid nanoparticles with l-PAA as the core and the prontonated
h-PAMAM as the shell. On the contrary, when the solution pH
was larger than 7.5, the resulting solid nanoparticles consisted
of the h-PAMAM core and the solvated l-PAA shell. When the
solution pH was in the range from 2.1 to 7.3, the aggregates
became vesicles with typical hollow structures. Interestingly,
the inverting of the inner surface and outer surface occurred in
the vesicle when the solution pH equals 4.6. The driving forces
of the complex self-assembly can be ascribed to the hydro-
philic-hydrophobic balance and the specific interactions be-
tween the carboxylic acid groups in l-PAA and various amino
groups in h-PAMAM. The hollow structure of the self-
assembled vesicles can be stabilized by using GDA to cross-
link the h-PAMAM layer. The resulting cross-linked hollow
spheres can encapsulate various noble metallic cations and
reduce them into nanoparticles in situ. The loading capacity of
them for various noble metals was ca. was ca. 15.5 wt % for
Au, 12.0 wt % for Ag, and 8.2 wt % for Pd, respectively. Such
hybrid materials can be potentially applied in metal catalysis.
Figure 11. TEM images of the cross-linked hollow spheres of
h-PAMAM (A) loading Au, (B) loading Ag, (C) loading Pd, and (D)
loading nothing. Scale bars are 500 nm.
Acknowledgment. We gratefully acknowledge financial
support provided by the National Basic Research Program
(2007CB808000), National Natural Science Foundation of China
(No. 50873058, No.50633010, No. 50503012), and Shanghai
Leading Academic Discipline Project (No. B202).
Supporting Information Available: Optical microscopy
images of the self-assembled aggregates, TEM images of the
vesicles at the different solution pH, and the TGA curves of
the different cross-linked hollow spheres of h-PAMAM, and
AFM images of the hollow spheres before and after crosslinking.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References and Notes
(1) (a) Muthukumar, M.; Ober, C. K.; Thomas, E. L. Science 1997,
277, 1225. (b) Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins,
K. E.; Keser, M.; Amstutz, A. Science 1997, 276, 384. (c) Caruso, F.;
Caruso, R. A.; Mohwald, H. Science 1998, 282, 1111. (d) Klok, H. A.;
Lecommandoux, S. AdV. Mater. 2001, 13, 1217. (e) Dennis, E. D.;
Eisenberg, A. Science 2002, 297, 967. (f) Bergbreiter, D. E. Angew. Chem.,
Int. Ed. 1999, 38, 2870. (g) Liu, X. K.; Jiang, M. Angew. Chem., Int. Ed.
2006, 45, 3846. (h) Lattuada, M.; Hatton, T. A. J. Am. Chem. Soc. 2007,
129, 12878. (i) Vanhest, J. C. M.; Delnoye, D. A. P.; Baars, M. W. P. L.;
Van Genderen, M. H. P.; Meijer, E. W. Science 1995, 268, 1592. (j) Ariga,
K.; Hill, J. P.; Lee, M. V.; Vinu, A.; Charvet, R.; Acharya, S. Sci. Technol.
AdV. Mater. 2008, 9, 014109. (k) Zhou, Y. F.; Yan, D. Y. Chem. Commun.
2009, 10, 1172.
(2) (a) Liu, S. Y.; Billingham, N. C.; Armes, S. P. Angew. Chem., Int.
Ed. 2001, 40, 2328. (b) Gohy, J.; Antoun, S.; Jerome, R. Macromolecules
2001, 34, 7435. (c) Mao, Z. W.; Ma, L.; Gao, C. Y.; Shen, J. C. J. Controlled
Release 2005, 104, 193. (d) Ahmed, F.; Pakunlu, R. I.; Srinivas, G.; Brannan,
A.; Bates, F.; Klein, M. L.; Minko, T.; Discher, D. E. Mol. Pharm. 2006,
3, 340. (e) Ilhan, F.; Galow, T. H.; Gray, M.; Clavier, G.; Rotello, V. M.
J. Am. Chem. Soc. 2000, 122, 5895.
(3) (a) Kabanov, A. V.; Bronich, T. K.; Kabanov, V. A.; Yu, K.;
Eisenberg, A. J. Am. Chem. Soc. 1998, 120, 9941. (b) Butun, V.; Armes,
S. P.; Billingham, N. C. Macromolecules 2001, 34, 1148. (c) Tsuda, K.;
Dol, G. C.; Gensch, T.; Hofkens, J.; Latterini, L.; Weener, J. W.; Meijer,
E. W.; de Schryver, F. C. J. Am. Chem. Soc. 2000, 122, 3445. (d) Won,
Y.-Y.; Brannan, A. K.; Davis, H. T.; Bates, F. S. J. Phys. Chem. B 2002,
106, 3354. (e) Du, J.; Tang, Y.; Lewis, A. L.; Armes, S. P. J. Am. Chem.
Soc. 2005, 127, 17982. (f) Wu, J.; Eisenberg, A. J. Am. Chem. Soc. 2006,
Figure 12. EDS spectra of the cross-linked hollow spheres of
h-PAMAM (A) loading Au, (B) loading Ag, and (C) loading Pd.
the spheres. But for the Ag nanoparticles, some agglomeration
of them was found in the spheres. The morphology difference
of various metal nanoparticles may be correlative to the
formation and growth of their crystal nucleus. Besides, the cross-
linked hollow spheres of h-PAMAM may also have some
inductive effects on the crystal growing.15 The EDS measure-
ment further confirmed the successful carrying of Au, Ag, or
Pd nanoparticles in the cross-linked hollow spheres of h-
PAMAM and the corresponding spectra were shown in Figure
12. The loading capacity of the resulting cross-linked hollow
spheres for various noble metals was ca. 15.5 wt % for Au,
12.0 wt % for Ag, and 8.2 wt % for Pd, respectively, by EDS
measurement (15.2 wt % for Au, 12.3 wt % for Ag, and 8.0 wt
% for Pd, respectively, by TGA data in Supporting Information
S3; 15.7 wt % for Au, 11.8 wt % for Ag, and 8.4 wt % for Pd,
respectively, by ICP-OES measurements).