The Journal of Organic Chemistry
4. EXPERIMENTAL SECTION
Sample. A commercial sample of isoxazole 1 (Aldrich, 99% purity)
was used.
Article
ACKNOWLEDGMENTS
■
These studies were partially funded by the Portuguese
“Fundacao para a Ciencia e a Tecnologia” (FCT), FEDER,
̧
̂
̃
Matrix-Isolation FTIR Spectroscopy. Prior to usage, the sample
was degassed by using the standard freeze−pump−thaw method. The
sample vapor was premixed with high purity argon (N60, supplied by
Air Liquide), in ratios from 1:1000 to 1:2000, using standard
monomeric techniques. The matrices were prepared by effusive
deposition of the premixed samples, from a 3 L glass reservoir, and the
flux was controlled by reading the drop pressure in the reservoir. A CsI
window, cooled to 15 K, was used as an optical substrate for the
matrices. The temperature of the CsI window was measured directly
by a silicone diode sensor connected to a digital controller with
accuracy of 0.1 K. In all experiments, an APD Cryogenics closed
helium refrigeration system with DE-202A expander was used.
The IR spectra were obtained using a Fourier transform infrared
spectrometer, equipped with a deuterated triglycine sulfate (DTGS)
detector and a Ge/KBr beam splitter, with 0.5 cm−1 resolution. To
avoid interference from atmospheric H2O and CO2, the optical path of
the spectrometer was continuously purged by a stream of dry air.
UV-Laser Irradiation Experiments. The matrices were irradiated
through an outer quartz window of the cryostat, using a frequency-
doubled signal beam provided by a MOPO-SL optical parametric
oscillator (fwhm ∼ 0.2 cm−1, repetition rate = 10 Hz, pulse energy ∼ 1
mJ, duration = 10 ns) pumped with a pulsed Nd:YAG laser.
Theoretical Calculations. All calculations were performed with
Gaussian 0375 at MP276 and DFT levels of theory using the standard
6-311++G(d,p) basis set.77,78 The DFT calculations were carried out
with the three-parameter density functional B3LYP,79 which includes
Becke’s gradient exchange correction,80 the Lee, Young, Parr,81 and
the Vosko, Wilk, Nusair correlation functionals.82 The geometry
optimizations were followed by harmonic frequency calculations, at the
same level of theory, which also allowed characterization of the nature
of the stationary points. To correct for the vibrational anharmonicity,
basis set truncation, and the neglected part of electron correlation, the
calculated frequencies below 3100 cm−1 were scaled down by 0.980
(B3LYP) or 0.976 (MP2) and by 0.950 if they are above 3100 cm−1.
The resulting frequencies, together with the calculated intensities, were
used to simulate the spectra shown in the figures by convoluting each
peak with a Lorentzian function with a full width at half-maximum
(fwhm) of 2 cm−1.83 Note that the peak intensities in the simulated
spectra (arbitrary units of “relative intensity”) are several times less
than the calculated intensities (in km mol−1).
and projects PTDC/QUI-QUI/111879/2009 and PTDC/
QUI-QUI/118078/2010, FCOMP-01-0124-FEDER-021082,
cofunded by QREN-COMPETE-UE. C. M. Nunes acknowl-
edges FCT for Grant No. SFRH/BD/28844/2006 and I. Reva
for Grant No. IF/00464/2012. We thank Prof. Hugh Douglas
Burrows for the helpful discussions.
REFERENCES
■
(1) Comprehensive Heterocyclic Chemistry; Lang, S. A., Lin, Y. I., Eds.;
Pergamon: Oxford, 1984; Vol. 6, Part 4B.
(2) Chemistry of Heterocyclic Compounds; Grunanger, P., Vita-Finzi,
̈
P., Eds.; John Wiley and Sons: New York, 1991; Vol. 49, Part 1.
(3) Comprehensive Heterocyclic Chemistry III; Giomi, D., Cordero, F.
M., Machetti, F., Eds.; Elsevier: Oxford, 2008; p 365.
(4) Pevarello, P.; Amici, R.; Brasca, M. G.; Villa, M.; Varasi, M.
Targets Heterocycl. Syst.: Chem. Prop. 1999, 3, 301.
(5) Pinho e Melo, T. M. V. D. Curr. Org. Chem. 2005, 9, 925.
(6) Fonseca, S. M.; Burrows, H. D.; Nunes, C. M.; Pinho e Melo, T.
M. V. D.; Gonsalves, A. M. d’A. R. Chem. Phys. Lett. 2005, 414, 98.
(7) Fonseca, S. M.; Burrows, H. D.; Nunes, C. M.; Pinho e Melo, T.
M. V. D. Chem. Phys. Lett. 2009, 474, 84.
́
(8) Lopes, S.; Nunes, C. M.; Gomez-Zavaglia, A.; Pinho e Melo, T.
M. V. D.; Fausto, R. J. Phys. Chem. A 2011, 115, 1199.
(9) Nunes, C. M.; Reva, I.; Pinho e Melo, T. M. V. D.; Fausto, R.;
̌
Solomek, T.; Bally, T. J. Am. Chem. Soc. 2011, 133, 18911.
(10) Dalvie, D. K.; Kalgutkar, A. S.; Khojasteh-Bakht, S. C.; Obach,
R. S.; O’Donnell, J. P. Chem. Res. Toxicol. 2002, 15, 269.
(11) Kalgutkar, A. S.; Nguyen, H. T.; Vaz, A. D. N.; Doan, A.; Dalvie,
D. K. Drug Metab. Dispos. 2003, 31, 1240.
(12) Yu, J.; Folmer, J. J.; Hoesch, V.; Doherty, J.; Campbell, J. B.;
Burdette, D. Drug Metab. Dispos. 2011, 39, 302.
(13) Ullman, E. F.; Singh, B. J. Am. Chem. Soc. 1966, 88, 1844.
(14) Singh, B.; Ullman, E. F. J. Am. Chem. Soc. 1967, 89, 6911.
(15) Singh, B.; Zweig, A.; Gallivan, J. B. J. Am. Chem. Soc. 1972, 94,
1199.
(16) D’Auria, M. Adv. Heterocycl. Chem. 2001, 79, 41.
(17) Tanaka, H.; Osamura, Y.; Matsushita, T.; Nishimoto, K. Bull.
Chem. Soc. Jpn. 1981, 54, 1293.
(18) Good, R. H.; Jones, G. J. Chem. Soc. C 1971, 1196.
(19) Padwa, A.; Chen, E.; Ku, A. J. Am. Chem. Soc. 1975, 97, 6484.
(20) Grellmann, K. H.; Tauer, E. J. Photochem. 1977, 6, 365.
(21) Sauers, R. R.; Hadel, L. M.; Scimone, A. A.; Stevenson, T. A. J.
Org. Chem. 1990, 55, 4011.
(22) Kurtz, D. W.; Shechter, H. Chem. Commun. 1966, 689.
(23) Ferris, J. P.; Antonucci, F. R.; Trimmer, R. W. J. Am. Chem. Soc.
1973, 95, 919.
ASSOCIATED CONTENT
■
S
* Supporting Information
Tables listing the observed IR peaks and their assignment based
on MP2 or B3LYP calculations or experimental reported data,
for ketene 2, hydrogen cyanide 3, 3-formylketenimine 5,
2‑formyl-2H-azirine 4, and 3-hydroxypropenenitrile 6. IR
spectra from laser irradiation isoxazole 1 with λ = 221 nm at
different times. PES profile for internal rotation of the C−C
bond of 2‑formyl-2H-azirine 4, 3-formyl-N-ketenimine 5, and 3-
oxopropanenitrile 8. Calculated relative energies for the
different conformations of 3-hydroxypropenenitrile 6 and
imidoylketene 7. Cartesian coordinates and frequencies (2−
8) from MP2/6-311++G(d,p) and (4−5) from B3LYP/6-311+
+G(d,p). This material is available free of charge via the
(24) Sato, T.; Yamamoto, K.; Fukui, K. Chem. Lett. 1973, 111.
(25) Ferris, J. P.; Antonucci, F. R. J. Am. Chem. Soc. 1974, 96, 2014.
(26) Heinzelmann, W.; Marky, M. Helv. Chim. Acta 1974, 57, 376.
̈
(27) Sato, T.; Saito, K. J. Chem. Soc., Chem. Commun. 1974, 781.
(28) Dietliker, K.; Gilgen, P.; Heimgartner, H.; Schmid, H. Helv.
Chim. Acta 1976, 59, 2074.
(29) Ferris, J. P.; Trimmer, R. W. J. Org. Chem. 1976, 41, 13.
(30) Sato, T.; Yamamoto, K.; Fukui, K.; Saito, K.; Hayakawa, K.;
Yoshiie, S. J. Chem. Soc., Perkin Trans. 1 1976, 783.
(31) Sauers, R. R.; Van Arnum, S. D. Tetrahedron Lett. 1987, 28,
5797.
(32) Pavlik, J. W.; St. Martin, H.; Lambert, K. A.; Lowell, J. A.;
Tsefrikas, V. M.; Eddins, C. K.; Kebede, N. J. Heterocycl. Chem. 2005,
42, 273.
(33) Adembri, G.; Donati, D.; Ponticelli, F. J. Photochem. 1981, 17,
81.
AUTHOR INFORMATION
■
Corresponding Author
Notes
(34) Tidwell, T. T. Spectroscopy and Physical Properties of Ketenes.
In Ketenes II, Second ed.; John Wiley and Sons: Hoboken, NJ, 2006.
The authors declare no competing financial interest.
8731
dx.doi.org/10.1021/jo301699z | J. Org. Chem. 2012, 77, 8723−8732