Chemistry Letters 2002
91
subsequent removal of the half part of B by the attack of some
nucleophiles during the usual workup process. Especially, 3
should be formed mainly as the less-strained eight-membered
cyclic polysulfides through thermal equilibration of the reaction
mixture involving elemental sulfur.
Compounds 3 were unreactive toward aerobic exposure and
oxidizing agents (mCPBA, aq. H2O2 solution, or CH3CO3H). In
contrast, treatment of 3 with nucleophiles (propylamine, NaCN,
or PPh3Þ or reducing agents (NaBH4 or LiAlH4) gave a complex
mixture, and treating a CH2Cl2 solution of 3 with HCl (gas,
excess) or BF3ÁOEt2 (1.0 mol amt.) afforded insoluble solids.
Treatment of 3a with S2Cl2 (1.0 mol amt.) from À78 ꢁC to R.T.
also gave polymeric product 5a and elemental sulfur.
Heating of a benzene solution of 3 at refluxing temperature in
the presence or absence of Et3N (excess) gave the recovery of 3.
However, 3 was converted into inseparable mixtures of
polysulfides 6 (x ¼ 1, 2, and 3) by heating in toluene at refluxing
temperature. The mass spectra of 6 revealed the parent ion peaks
of each components, and the 1H NMR spectra of 6 showed several
signals of the thioformyl protons and the methylene protons at
ꢀ ¼ 9:50{9:60 and ꢀ ¼ 5:20{5:50 ppm, respectively. The 13C
NMR spectra of 6 also exhibited the corresponding signals of the
thioformyl carbons and the methylene carbons at ꢀ ¼ 189{190
and ꢀ ¼ 58{60 ppm, respectively. From the MS data and the
elemental analysis data of 6, the average values of x for 6 were
approximately estimated to be 1.5 in all cases. Especially,
trisulfide 6a (x ¼ 1, 8%) was obtained after chromatographic
separation. In addition, the mixture of 6a (x ¼ 1:5 approximately)
was converted into a mixture of bisformamides 7a (x ¼ 0 and 1,
about 1 : 1) by aerobic exposure for 2 weeks, and the LiAlH4
reduction of the mixture of 7a in THF followed by treating CH3I
afforded 8a in 61% yield. Results of the thermal reactions of 3 are
given in Table 2.
N-CHS) among the signals of 6 and unidentified complex signals
along with gradual decreasing of 3a. This result indicated that
thermal ringfission of 3 afforded thiols 9 and the reaction of 9 with
elemental sulfur would give polysulfides 6. It was suggested that 9
were given by thermal ring fission from 3 directly or, more
probably, from 2 which might be generated through thermal
sulfur extrusion of 3. However, all attempts for isolation or
trapping of 2 or thiol 9a using phenylacetylene, DMAD, or CH3I
were not successful.
In conclusion, we found a synthesis and thermal ring fission
of 1,2,3,4,5,7-pentathiazocanes 3. Further mechanistic inspection
for the formation of 3 from 1 are under way in our laboratory.
This work was partially supported by Grant-in-Aid for
Scientific Research (No. 12650843) from the Ministry of
Education, Science, Sports, and Culture.
References and Notes
´
a) F. Feher and W. Becher, Z. Naturforsch., 20B, 1125 (1965). b) F.
1
Asinger, W. Schafer, and H.-W. Becker, Angew. Chem., 77, 41 (1965).
¨
c) K.-H. Linke and D. Skupin, Z. Naturforsch., B, 26, 1371 (1971). d) K.-
H. Linke, D. Skupin, J. Lex, and B. Engelen, Angew. Chem., 85, 143
(1973). e) H. Poisel and U. Schmidt, Chem. Ber., 104, 1714 (1971). f)
R. M. Dodson, V. Srinivasan, K. S. Sharma, and R. F. Sauers, J. Org.
Chem., 37, 2367 (1972). g) W. Lutz, T. Pilling, G. Rihs, H. R. Waespe,
and T. Winkler, Tetrahedron Lett., 38, 5457 (1990). h) F. W.
Heinemann, H. Hartung, N. Maier, and H. Matschiner, Z. Naturforsch.,
B: Chem. Sci., 49, 1063(1994). i) N. Terada, N. Tokitoh, T. Imakubo, M.
Goto, and R. Okazaki, Bull. Chem. Soc. Jpn., 68, 2757 (1995). j) R.
Steudel, K. Bergemann, J. Buschmann, and P. Luger, Angew. Chem.,
Int. Ed. Engl., 35, 2537 (1996). k) R. Steudel, K. Bergemann, J.
Buschmann, and P. Luger, Angew. Chem., 108, 2641 (1996). l) N.
Terada, N. Tokitoh, and R. Okazaki, Chem. Eur. J., 3, 62 (1997). m)
F. A. G. El-Essawy, S. M. Yassin, I. A. El-Sakka, A. F. Khattab, I. Sꢀ
tofte, J. ꢁ. Madsen, and A. Senning, J. Org. Chem., 63, 9840 (1998). n)
A. Ishii and J. Nakayama, REVIEWS ON HETEROATOM CHEMIS-
TRY, 19, 1 (1999).
2
a) P. B. Roush and W. K. Musker, J. Org. Chem., 43, 4295 (1978). b)
J. T. Doi and W. K. Musker, J. Am. Chem. Soc., 100, 3533 (1978). c)
W. K. Musker, T. L. Wolford, and P. B. Roush, J. Am. Chem. Soc., 100,
5416 (1978). d) H. Fujihara and N. Furukawa, Yuki Gosei Kagaku
Kyokai Shi, 49, 636 (1991). e) N. Furukawa, Bull. Chem. Soc. Jpn., 70,
2571 (1997). f) Y. Takikawa, T. Yoshida, Y. Koyama, K. Shimada, and
C. Kabuto, Chem. Lett., 1995, 277. g) Y. Takikawa, T. Yoshida, Y.
Koyama, K. Sato, Y. Shibata, S. Aoyagi, K. Shimada, and C. Kabuto,
Chem. Lett., 2000, 870.
Table 2. Thermal Reaction of 1,2,3,4,5,7-Pentathiazocanes 3
3
4
a) U. Anthoni, C. Christophersen, N. Jacobsen, and A. Svendsen,
Tetrahedron, 38, 2425 (1982). b) E. Weissflog, Phosphorus and Sulfur,
15, 27 (1983).
a) C. G. Le Fevre and R. J. W. Le Fevre, J. Chem. Soc., 1932, 1142. b)
M. V. Bhatt, S. Atmaram, and V. Baliah, J. Chem. Soc., Perkin Trans. 2,
1976, 1228.
5
6
7
N. J. Leonald, K. Conrow, and A. E. Yethon, J. Org. Chem., 27, 2019
(1962).
a) E. Baumann and E. Formm, Chem. Ber., 48, 826 (1891). b) D. J.
Collins and J. Graymore, J. Chem. Soc., 1953, 4089.
The X-ray crystallographic data of 3a (R ¼ C6H5): C8H9NS5,
Mw ¼ 279:47, Colorless Prism, Monoclinic, P21/c(No. 14), a ¼
ꢁ
ꢂ
13:533ð3Þ, b ¼ 4:7633ð9Þ, c ¼ 19:485ð3Þ A, ꢁ ¼ 110:15ð1Þ , V ¼
1179:1ð4Þ A , Z ¼ 4, Dcalc ¼ 1:574 g/cm3, ꢂðCuK Þ ¼ 87:29 cmÀ1
,
ꢂ 3
ꢃ
R ¼ 0:065, Rw ¼ 0:067.
8
a) D. Grangjean and A. Leclaire, C. R. Acad. Sci. Paris, Ser. C, 265, 795
(1967). b) R. Steudel, Angew. Chem., 87, 683 (1975). c) B. Meyer,
Chem. Rev., 76, 367 (1976). d) R. Steudel and J. Latte, Angew. Chem.,
86, 648 (1974). e) P. Luger, H. Bradazek, R. Steudel, and M. Rebsch,
Chem. Ber., 109, 180(1976). f) R. Steudel, R. Reinhardt, andT. Sandow,
Angew. Chem., 89, 757 (1977). g) T. Heinlein and K. F. Tebbe, Acta
Crystallogr., Sect. C, 40, 1596 (1984). h) J. Hahn and T. Nataniel, Z.
Anorg. Allg. Chem., 548, 180 (1987).
Scheme 1.
1
The H NMR monitoring of the thermal reaction of 3a in
C6D6 at 108 ꢁC in an NMR tube showed the signals assigned to
thiol 9a (ꢀ ¼ 3:28 ppm (1H, t, J ¼ 8:9 Hz) and ꢀ ¼ 4:71 ppm
(2H, d, J ¼ 8:9 Hz) for N-CH2-SH, and ꢀ ¼ 9:10 ppm (1H, s) for