J. R. Merritt et al. / Bioorg. Med. Chem. Lett. 16 (2006) 4107–4110
4109
Table 3. In vitro chemotaxis, Caco2, and liver microsome results for selected compounds (data shown are means standard deviation of two or
more measurements)
Compounds
CXCR2 chemotaxis
IC50 (lM)
Caco2 Papp A:B (nm/s)
(predicted absorption)
Human microsome
(% remaining)
Rat microsome
(% remaining)
15
19
22
0.026 0.011
0.1448 0.0002
0.0191 0.0099
24 1.7 (low)
101 4.6 (high)
120 2.4 (high)
64
72
82
2
3
5
67
56
75
7
5
7
Steinberg, K. P.; Goodman, R. B. J. Immunol. 1999, 162,
2341.
8. Glinski, W.; Jablonska, S. J. Invest. Dermatol. 1984, 82,
386.
9. Murphy, P. M. Semin. Hematol. 1997, 34, 311.
10. Murphy, P. M. Ann. Rev. Immunol. 1994, 12, 593.
11. Cacalano, G.; Lee, J.; Kikly, K.; Ryan, A. M.; Pitts-Meek,
S.; Hultgren, B.; Wood, W. I.; Moore, M. W. Science
1994, 265, 682.
potency. Simple acyclic alkyls were found to be as
good as cyclic alkyls, as exemplified by 2-ethylpropyl,
isopropyl, and tert-butyl compounds 22, 23, and 24.
While unbranched heterobenzylics such as furanyl
compound 25 showed significant potency, further chain
elongation to phenethyl resulted in a much weaker com-
pound, 26.
Three potent compounds, 15, 19, and 22, were selected
for further evaluation in chemotaxis19, Caco220, and
rat and human liver microsome assays,21 Table 3. All
three compounds were potent inhibitors of CXCR2-
mediated chemotaxis. Although compound 15 was the
most potent (chemotaxis IC50 = 0.026 0.011 lM), its
predicted absorption based on Caco2 permeability was
low. This compound and others with right-side anilines
also had poor apparent solubility in most solvents.
Cyclobutenediones with right-side alkyls, such as 19
and 22, had much better apparent solubility and had
high predicted absorption based on Caco2 results. The
ethylpropyl compound 22 was a potent inhibitor of che-
motaxis (IC50 = 0.0191 0.0099 lM), predicted to be
well-absorbed based on Caco2 results, and predicted
to have good metabolic stability based on human and
rat microsome studies (>50% remaining after 30 min
at 37 ꢁC). These findings justify further SAR develop-
ment and in vivo studies.
12. Sekido, N.; Mukaida, N.; Harada, A.; Nakanishi, I.;
Watanabe, Y.; Matsushima, K. Nature 1993, 365, 654.
13. (a) Podolin, P. L.; Bolognese, B. J.; Foley, J. J.; Schmidt,
D. B.; Buckley, P. T.; Widdowson, K. L.; Jin, Q.; White, J.
R.; Lee, J. M.; Goodman, R. B.; Hagen, T. R.; Kajikawa,
O.; Marshall, L. A.; Hay, D. W.; Sarau, H. M. J. Immunol.
2002, 169, 6435; (b) White, J. R.; Lee, J. M.; Young, P. R.;
Hertzberg, R. P.; Jurewicz, A. J.; Chaikin, M. A.;
Widdowson, K.; Foley, J. J.; Martin, L. D.; Griswold,
D. E.; Sarau, H. M. J. Biol. Chem. 1998, 273, 10095; (c)
McColl, S. R.; Clark-Lewis, I. J. Immunol. 1999, 163,
2829; (d) Souza, D. G.; Bertini, R.; Vieira, A. T.; Cunha,
F. Q.; Poole, S.; Allegretti, M.; Colotta, F.; Teixeira, M.
M. Br. J. Pharmacol. 2004, 143, 132; (e) Bertini, R.;
Allegretti, M.; Bizzarri, C.; Moriconi, A.; Locati, M.;
Zampella, G.; Cervellera, M. N.; di Cioccio, V.; Cesta, M.
C.; Galliera, E.; Martinez, F. O.; di Bitondo, R.; Troiani,
G.; Sabbatini, V.; D’Anniballe, G.; Anacardio, R.; Cutrin,
J. C.; Cavalieri, B.; Mainiero, F.; Strippoli, R.; Villa, P.; di
Girolamo, M.; Martin, F.; Gentile, M.; Santoni, A.;
Corda, D.; Poli, G.; Mantovani, A.; Ghezzi, P.; Colotta,
F. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 11791.
14. Widdowson, K. L.; Elliott, J. D.; Veber, D. F.; Nie, H.;
Rutledge, M. C.; McCleland, B. W.; Xiang, J.-N.;
Jurewicz, A. J.; Hertzberg, R. P.; Foley, J. J.; Griswold,
D. E.; Martin, L.; Lee, J. M.; White, J. R.; Sarau, H. M.
J. Med. Chem. 2004, 47, 1319.
15. (a) de Boer, W. I. Drug Discovery Today 2004, 10, 93(b)
Busch-Petersen, J.; Jin, Q.; McCleland, B. W.; Nie, H.;
Palovich, M. R.; Davis, R. S.; Fu, W.; Elliott, J. D.;
Burman, M.; Foley, J. J.; Schmidt, D. B.; Podolin, P.;
Bolognese, B. J.; Underwood, D. C.; Osborn, R. R.;
Dehaas, C. J.; Salmon, M.; Carpenter, D. C.; Killian, D.
J.; Sarau, H. M.; Widdowson, K. L. In Abstracts of
Papers, 228th National Meeting of the American Chem-
ical Society, Philadelphia, PA, United States, August 22–
26, 2004; American Chemical Society: Washington, DC,
2004; MEDI-192.
In summary, we have developed a potent series of
cyclobutenedione CXCR2 receptor antagonists. Preli-
minary pharmacokinetic studies suggest that this type
of compound is amenable to further drug develop-
ment. Additional developments and in vivo results
have been reported22 and will appear in a subsequent
publication.
References and notes
1. (a) Schall, T. J.; Bacon, K. B. Curr. Opin. Immunol. 1994,
6, 865; (b) Butcher, E. C.; Picker, L. J. Science 1996, 272,
60.
2. (a) Adams, D. H.; Lloyd, A. R. Lancet 1997, 349, 490; (b)
Saunders, J.; Tarby, C. M. Drug Discovery Today 1999, 4,
80; (c) Gura, T. Science 1996, 272, 954.
3. Luster, A. D. N. Eng. J. Med. 1998, 338, 436.
4. (a) Barnes, P. J.; Shapiro, S. D.; Pauwels, R. A. Eur.
Respir. J. 2003, 4, 672; (b) Donnelly, L. E.; Rogers, D. F.
Drugs 2003, 63, 1973.
5. Feldmann, M.; Brennan, F. M.; Maini, R. N. Annu. Rev.
Immunol. 1996, 14, 397.
16. Butera, J. A.; Antane, M. M.; Antane, S. A.; Argentieri, T.
M.; Freeden, C.; Graceffa, R. F.; Hirth, B. H.; Jenkins, D.;
Lennox, J. R.; Matelan, E.; Norton, N. W.; Quagliato, D.;
Sheldon, J. H.; Spinelli, W.; Warga, D.; Wojdan, A.;
Woods, M. J. Med. Chem. 2000, 43, 1187.
17. CXCR2 binding assay: For each 200 ll reaction, a
working mixture of 0.020 lg/ll hCXCR2-CHO over-
expressing membranes with
a
specific activity of
0.6 pmol/mg (Biosignal, Montreal [Quebec], Canada) and
2 lg/ll wheatgerm-agglutinin (WGA) coated SPA beads
(Amersham Biosciences, Piscataway, NJ) was prepared in
CXCR2 assay buffer (25 mM Hepes, pH 7.4, 2.0 mM
6. Kucharzik, T.; Walsh, S. V.; Chen, J.; Parkos, C. A.;
Nusrat, A. Am. J. Pathol. 2001, 159, 2001.
7. Cummings, C. J.; Martin, T. R.; Frevert, C. W.; Quan, J.
M.; Wong, V. A.; Mongovin, S. M.; Hagen, T. R.;