Organic Letters
Letter
2
008, 41, 1534−1544. (b) Ruiz-Castillo, P.; Buchwald, S. L.
Aqueous Solution. J. Am. Chem. Soc. 2015, 137, 9820−9823. (c) Zhu,
Y.; Li, X.; Wang, X.; Huang, X.; Shen, T.; Zhang, Y.; Sun, X.; Zou, M.;
Song, S.; Jiao, N. Silver-Catalyzed Decarboxylative Azidation of
Aliphatic Carboxylic Acids. Org. Lett. 2015, 17, 4702−4705. (d) Liu,
Z.-J.; Lu, X.; Wang, G.; Li, L.; Jiang, W.-T.; Wang, Y.-D.; Xiao, B.; Fu,
Y. Directing Group in Decarboxylative Cross-Coupling: Copper-
Catalyzed Site-Selective C-N Bond Formation from Nonactivated
Aliphatic Carboxylic Acids. J. Am. Chem. Soc. 2016, 138, 9714−9719.
(e) Fang, Z.; Feng, Y.; Dong, H.; Li, D.; Tang, T. Copper(I)-catalyzed
radical decarboxylative imidation of carboxylic acids with N-
fluoroarylsulfonimides. Chem. Commun. 2016, 52, 11120−11123.
(f) Marcote, D. C.; Street-Jeakings, R.; Dauncey, E.; Douglas, J. J.;
Ruffoni, A.; Leonori, D. Photoinduced decarboxylative azidation of
cyclic amino acids. Org. Biomol. Chem. 2019, 17, 1839−1842.
(14) Zhao, W.; Wurz, R. P.; Peters, J. C.; Fu, G. C. Photoinduced,
Copper-Catalyzed Decarboxylative C-N Coupling to Generate
Protected Amines: An Alternative to the Curtius Rearrangement. J.
Am. Chem. Soc. 2017, 139, 12153−12156.
Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions.
Chem. Rev. 2016, 116, 12564−12649.
(
4) (a) Monnier, F.; Taillefer, M. Catalytic C-C, C-N, and C-O
Ullmann-Type Coupling Reactions. Angew. Chem., Int. Ed. 2009, 48,
6
954−6971. (b) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C.
Photoinduced Ullmann C−N Coupling: Demonstrating the Viability
of a Radical Pathway. Science 2012, 338, 647−651. (c) Sambiagio, C.;
Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Copper catalysed
Ullmann type chemistry: from mechanistic aspects to modern
development. Chem. Soc. Rev. 2014, 43, 3525−3550.
(
5) Qiao, J. X.; Lam, P. Y. S. Copper-Promoted Carbon-Heteroatom
Bond Cross-Coupling with Boronic Acids and Derivatives. Synthesis
011, 2011, 829−856.
6) Part B: Reactions and Synthesis. In Advanced Organic Chemistry,
2
(
th
5
ed.; Carey, F. A., Sundberg, R. J., Eds.; Springer Science+Business
Media, LLC, 2007; pp 229−232.
7) Gomez, S.; Peters, J. A.; Maschmeyer, T. The Reductive
(
3
Amination of Aldehydes and Ketones and the Hydrogenation of
Nitriles: Mechanistic Aspects and Selectivity Control. Adv. Synth.
Catal. 2002, 344, 1037−1057.
(15) Mao, R.; Frey, A.; Balon, J.; Hu, X. Decarboxylative C(sp )-N
cross-coupling via synergetic photoredox and copper catalysis. Nat.
Catal. 2018, 1, 120−126.
3
(
8) Ghosh, A. K.; Brindisi, M.; Sarkar, A. The Curtius Rearrange-
(16) Liang, Y.; Zhang, X.; MacMillan, D. W. C. Decarboxylative sp
ment: Applications in Modern Drug Discovery and Medicinal
C-N coupling via dual copper and photoredox catalysis. Nature 2018,
559, 83−88.
Chemistry. ChemMedChem 2018, 13, 2351−2373.
(
9) Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. V.
(17) For recent reviews on anodic oxidative C−N bond formation:
(a) Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic Organic
Electrochemical Methods Since 2000: On the Verge of a Renaissance.
Chem. Rev. 2017, 117, 13230−13319. (b) Zhao, Y.; Xia, W. Recent
advances in radical-based C-N bond formation via photo-/electro-
chemistry. Chem. Soc. Rev. 2018, 47, 2591−2608. (c) Karkas, M. D.
Electrochemical strategies for C-H functionalization and C-N bond
formation. Chem. Soc. Rev. 2018, 47, 5786−5865. (d) Jiang, Y.; Xu,
K.; Zeng, C. Use of Electrochemistry in the Synthesis of Heterocyclic
Structures. Chem. Rev. 2018, 118, 4485−4540.
P. P. Mitsunobu and related reactions: advances and applications.
Chem. Rev. 2009, 109, 2551−2651.
(
10) (a) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Recent advances
in the transition metal-catalyzed twofold oxidative C-H bond
activation strategy for C-C and C-N bond formation. Chem. Soc.
Rev. 2011, 40, 5068−5083. (b) Wang, H.; Gao, X.; Lv, Z.; Abdelilah,
T.; Lei, A. Recent Advances in Oxidative R1-H/R2-H Cross-Coupling
with Hydrogen Evolution via Photo-/Electrochemistry. Chem. Rev.
2
(
019, 119, 6769−6787.
11) (a) Do, H.-Q.; Bachman, S.; Bissember, A. C.; Peters, J. C.; Fu,
(18) (a) Part 1: Oxidations. In Electroorganic Syntheses; Torii, S.,
Ebel, H. F., Eds.; Wiley-VCH: Kodansha, 1985. (b) Schafer, H. J.
Recent Contributions of Kolbe Electrolysis to Organic Synthesis. Top.
Curr. Chem. 1990, 152, 91−151.
(19) (a) Klocke, E.; Matzeit, A.; Gockeln, M.; Schafer, H. J.
Influences on the Selectivity of the Kolbe versus the Non-Kolbe
Electrolysis in the Anodic Decarboxylation of Carboxylic Acids. Chem.
Ber. 1993, 126, 1623−1630. (b) Comprehensive Organic Name
Reactions and Reagents; Wang, Z., Ed.; Wiley & Sons, Inc.: Hoboken,
NJ, 2009; pp 1443−1446.
(20) Xiang, J.; Shang, M.; Kawamata, Y.; Lundberg, H.; Reisberg, S.;
Chen, M.; Mykhailiuk, P.; Beutner, G.; Collins, M.; Davies, A.; Bel, M.
D.; Gallego, G.; Spangler, J.; Starr, J. T.; Yang, S.; Blackmond, D.;
Baran, P. S. Hindered Dialkyl Ether Synthesis via Electrogenerated
Carbocations. Nature 2019, 573, 398−402.
(21) Seebach, D.; Charczuk, R.; Gerber, C.; Renaud, P.; Berner, H.;
Schneider, H. Elektrochemische Decarboxylierung von L-Threonin-
und Oligopeptid-Derivaten unter Bildung von N-Acyl-N,O-acetalen:
Herstellung von Oligopeptiden mit Carboxamid- oder Phosphonat-C-
Terminus. Helv. Chim. Acta 1989, 72, 401−425.
(22) Lin, D.-Z.; Huang, J.-M. Electrochemical N-Formylation of
Amines via Decarboxylation of Glyoxylic Acid. Org. Lett. 2018, 20,
2112−2115.
(23) It has been established that several carbocations could be
accumulated through the anodic oxidation of substrates in the absence
of nucleophiles at low temperature, known as the ‘cation pool’
method; see references below for details: (a) Yoshida, J.-i.; Suga, S.;
Suzuki, S.; Kinomura, N.; Yamamoto, A.; Fujiwara, K. Direct
Oxidative Carbon-Carbon Bond Formation Using the “Cation Pool”
Method. 1. Generation of Iminium Cation Pools and Their Reaction
with Carbon Nucleophiles. J. Am. Chem. Soc. 1999, 121, 9546−9549.
(b) Shoji, T.; Kim, S.; Chiba, K. Synthesis of Azanucleosides by
Anodic Oxidation in a Lithium Perchlorate-Nitroalkane Medium and
Diversification at the 4’-Nitrogen Position. Angew. Chem., Int. Ed.
2017, 56, 4011−4014. (c) Yoshida, J.-i.; Shimizu, A.; Hayashi, R.
G. C. Photoinduced, Copper-Catalyzed Alkylation of Amides with
Unactivated Secondary Alkyl Halides at Room Temperature. J. Am.
Chem. Soc. 2014, 136, 2162−2167. (b) Kainz, Q. M.; Matier, C. D.;
Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Asymmetric
copper-catalyzed C-N cross-couplings induced by visible light. Science
2
016, 351, 681−684. (c) Peacock, D. M.; Roos, C. B.; Hartwig, J. F.
Palladium-Catalyzed Cross Coupling of Secondary and Tertiary Alkyl
Bromides with a Nitrogen Nucleophile. ACS Cent. Sci. 2016, 2, 647−
6
52. (d) Matier, C. D.; Schwaben, J.; Peters, J. C.; Fu, G. C. Copper-
Catalyzed Alkylation of Aliphatic Amines Induced by Visible Light. J.
Am. Chem. Soc. 2017, 139, 17707−17710.
(
12) For selected reviews of decarboxylative cross-coupling
reactions: (a) Rodríguez, N.; Goossen, L. J. Decarboxylative coupling
reactions: a modern strategy for C-C bond formation. Chem. Soc. Rev.
2
011, 40, 5030−5048. (b) Weaver, J. D.; Recio, A.; Grenning, A. J.;
Tunge, J. A. Transition Metal-Catalyzed Decarboxylative Allylation
and Benzylation Reactions. Chem. Rev. 2011, 111, 1846−1913.
(
c) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Visible-Light-Induced
Decarboxylative Functionalization of Carboxylic Acids and Their
Derivatives. Angew. Chem., Int. Ed. 2015, 54, 15632−15641.
(
d) Kumar, N. Y. P.; Bechtoldt, A.; Raghuvanshi, K.; Ackermann, L.
Ruthenium(II)-Catalyzed Decarboxylative C−H Activation: Versatile
Routes to meta-Alkenylated Arenes. Angew. Chem., Int. Ed. 2016, 55,
6
929−6932. (e) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Metal-Catalyzed
Decarboxylative C-H Functionalization. Chem. Rev. 2017, 117, 8864−
907. (f) Arshadi, S.; Ebrahimiasl, S.; Hosseinian, A.; Monfared, A.;
8
Vessally, E. Recent developments in decarboxylative cross-coupling
reactions between carboxylic acids and N-H compounds. RSC Adv.
2
(
019, 9, 8964−8976.
13) (a) Kiyokawa, K.; Yahata, S.; Kojima, T.; Minakata, S.
Hypervalent Iodine(III)-Mediated Oxidative Decarboxylation of β,γ-
Unsaturated Carboxylic Acids. Org. Lett. 2014, 16, 4646−4649.
(
b) Liu, C.; Wang, X.; Li, Z.; Cui, L.; Li, C. Silver-Catalyzed
Decarboxylative Radical Azidation of Aliphatic Carboxylic Acids in
E
Org. Lett. XXXX, XXX, XXX−XXX