SCHEME 2 a
derivative (2h), giving a mixture of diastereomers that
we have not been able to separate. This mixture is,
however, easily converted to the enantiomerically pure
alkaloid (-)-(S)-brevicolline.20 The chiral nitroalkene
synthon 2h has been obtained starting from natural
amino acid (S)-proline.21
The present methodology can be applied widely. The
preparation of 3-(2-aminoethyl)-1H-indole, tryptamine
and its derivatives, the neurotransmitter serotonin, and
the tissue hormone melatonin constitute especially im-
portant examples.22 In general, the tryptamines are an
important class of compounds frequently used as building
blocks in the construction of numerous indole alkaloids
with useful biological activity,2 but they are not very
stable. Therefore, syntheses have been designed to pass
through stable intermediates likely 3-(2-nitroethyl)in-
dolyl derivatives, and subsequently transformed to the
3
a
Reagents and conditions: (a) (i) H2 (1 atm), Raney nickel, room
temp for 16 h; (ii) 4 N HCl-dioxane, 78%. (b) (i) 37% aq HCHO,
amino compounds. Synthetic routes to tryptamines via
MeOH, room temp for 18 h; (ii) 6% aq K2CO3, EtOAc, room temp,
reduction of the nitro compounds2
4-26
have been demon-
1
h; 90%. (c) Pd/C, xylenes, refluxing for 4 h, 83%.
strated. Our novel synthetic approach using the Lewis
acid promoter cerium(III) salt provides an easy and
convenient method of making tryptamines by Michael
addition of indoles to nitroalkenes. One of the most
important aspects in this methodology is that the solvent-
free conditions suppress any polymerization phenomena
of the acid-sensitive substrates.
cerium(III) chloride heptahydrate and sodium iodide.
While â-carbolines can be synthesized via tryptamines
31
(
vide supra), 4-substituted â-carbolines lacking substitu-
tion at the 3-position are not well represented in the
literature. We have been especially interested in dem-
onstrating the value of our present procedure by synthe-
sis of methyl 9H-â-carbolines-4-carboxylate (6). Busacca’s
The â-carbolines represent a large group of biologically
active alkaloids widespread in nature.2
7-29
A number of
32
method of derivatization of an intermediate to generate
central nervous system pharmacological effects have been
attributed to such alkaloids.30 Synthesis of pyrido[3,4-b]-
indoles, the â-carbolines (Scheme 2), was examined to
further evaluate the general utility of silica gel-supported
a diverse group of 4-substituted â-carbolines requires
N-protection, whereas our linear approach involves in-
troduction of the 4-substituent in the first synthetic step.
Toward this goal, we began with Michael addition of
indole (1a) to methyl â-nitroacrylate (2g) under our
conditions (Table 1, entry 10). The reaction affords indole
(19) (2-Nitroethyl)indolyl derivative 3ah was obtained under Michael
conditions using indole-anion but in 47% yield and the use of bulky
protecting groups in the 1-position was needed; see: Mahboobi, S.;
Wiegrebe, W.; Popp, A. J. Nat. Prod. 1999, 62, 577-579.
3
ag in excellent yield, and the nitro group has been
efficiently reduced by hydrogenation in the presence of
Raney nickel to give the â-substituted tryptamine deriva-
tive 4.33 The hydrochloride of 4 was converted in modest
yield under protic conditions according to the standard
(
20) (a) Towers, G. H. N.; Abramovski, Z. J. Nat. Prod. 1983, 46,
5
72-577. (b) Lazurjevsld, G.; Terentjeva, I. Heterocycles 1976, 4, 1783-
1
810.
(
21) (a) Mahboobi, S.; Eibler, E.; Koller, M.; Kumar, S.; Popp, A. J.
Org. Chem. 1999, 64, 4697-4704. (a) Mahboobi, S.; Popp, A.; Burge-
meister, T.; Schollmeyer, D. Tetrahedron: Asymmetry 1998, 9, 2369-
34
procedure into the 4-substituted 1,2,3,4-tetrahydro-â-
2
376. (c) Pettit, G. R.; Singh, S. B.; Herald, D. L.; Lloyd-Williams, P.;
carboline 5 by condensation with formaldehyde followed
by Pictet-Spengler cyclization of the imine. By compari-
Kantoci, D.; Burkett, D. D.; Bark o` czy, J.; Hogan, F.; Wardlaw, T. R.
J. Org. Chem. 1994, 59, 6287-6295.
(
22) (a) Hibino, S.; Choshi, T. Nat. Prod. Rep. 2002, 19, 148-180.
(
5
b) Semenov, B. B.; Smushkevich, Y. I. Russ. Chem. Bull., Int. Ed. 2002,
1, 185-186. (c) Repke, D. B.; Grotjahn, D. B.; Shulgin, A. T. J. Med.
Chem. 1985, 28, 892-896.
(29) (a) Cacchi, S.; Fabrizi, G.; Parisi, L. M. Org. Lett. 2003, 5, 3843-
3846. (b) Zhang, H.; Larock, R. C. J. Org. Chem. 2002, 67, 7048-7056.
(c) Busacca, C. A.; Dong, Y. Synth. Commun. 2000, 30, 501-509. (d)
Madrigal, A.; Grande, M.; Avendano, C. J. Org. Chem. 1998, 63, 2724-
2727. (e) Cui, C.-B.; Kakeya, H.; Osada, H. Tetrahedron 1997, 53, 59-
72. (f) Wu, G.; Yamamaka, E.; Cook, J. Heterocycles 1978, 9, 175-
182.
(
23) (a) Tanino, H.; Fukuishi, K.; Ushiyama, M.; Okada, K. Tetra-
hedron 2004, 60, 3273-3282. (b) Katritzky, A. R.; Pozharskii, A. F. In
Handbook of Heterocyclic Chemistry; Pergamon: Oxford, 2000; Chapter
4
. (c) Joule, J. A. In Science of Synthesis (Houben-Weyl Methods of
Molecular Transformations); Thomas, E. J., Ed.; Georg Thieme Ver-
lag: Stuttgart, 2000; Vol. 10, pp 361-652. (d) Gribble, G. W. J. Chem.
Soc., Perkin Trans. 1 2000, 1045-1075. (e) Cordell, G. A. The Alkaloids;
Mausjke, H. F., Rodrigo, R., Eds.: Academic: New York, 1979; Vol.
XVII, pp 199-384.
(30) (a) Louis, E. D.; Zheng, W.; Jurewicz, E. C.; Watner, D.; Chen,
J.; Factor-Litvak, P.; Parides, M. Neurology 2002, 95, 1940-1944. (b)
May, Y.; Rommelspacher, H.; Pawlik, M. J. Neurochem. 1991, 56, 490-
499.
(31) (a) Cook, J. M.; Campos, O.; Dipierro, M.; Cain, M.; Mantei,
R.; Gawish, A. Heterocycles 1980, 14, 975-983. (b) Cook, J. M.; Soerens,
D.; Sandrin, J.; Ungemach, F.; Mokry, P.; Wu, G. S.; Yamanaka, E.;
Hutchins, L.; DiPierro, M. J. Org. Chem. 1979, 44, 535-545. Tradi-
tionally, â-carbolines have been synthesized from tryptamines, even
if attempts have been made recently to synthesize the â-carbolines
from non tryptamine precursors; see: Kannadasan, S.; Srinivasan, P.
C. Synth. Commun. 2004, 34, 1325-1335.
(
24) (a) Ottoni, O.; Neder, A. V. F.; Bias, A. K. B.; Cruz, R. P. A.;
Aquino, L. B. Org. Lett. 2001, 3, 1005-1007. (b) Okauchi, T.; Itonaga,
M.; Minami, T.; Owa, T.; Kitoh, K.; Yoshino, H. Org. Lett. 2000, 2,
1
5
2
485-1487.
(
25) Wynne, J. H.; Stalick, W. M. J. Org. Chem. 2002, 67, 5850-
953.
(
26) (a) Matsuzomo, M.; Fukuda, T.; Iwao, M. Tetrahedron Lett.
001, 42, 7621-7623. (b) Amat, M.; Hadida, S.; Sathyanaryama, S.;
(32) Busacca, C. A.; Eriksson, M. C.; Dong, Y.; Prokopowicz, A. S.;
Salvagno, A. M.; Tschantz, M. A. J. Org. Chem. 1999, 64, 4564-4568.
(33) It should be noted that other procedures for obtaining these
esters of 3-amino-2-(1H-3-indolyl)propanoic acid exist in the literature
(for example, see: Droste, H.; Wieland, T. Liebigs Ann. Chem. 1987,
901-910). However, these routes either are laborious, are comprised
of steps of low yield, or require harsh reagents.
Bosch, J. J. Org. Chem. 1994, 59, 10-11.
(
27) (a) Magnier, B. J.; Langlois, Y. Tetrahedron 1998, 54, 6201-
258. (b) Saxton, J. E. Nat. Prod. Rep. 1997, 559-563.
28) (a) Wang, H.; Usui, T.; Osada, H.; Ganesan, A. J. Med. Chem.
6
(
2
000, 43, 1577-1585. (b) Srivastava, S. K.; Agarwal, A.; Chanhan, P.
M. S.; Agarwal, S. K.; Bhaduri, A. P.; Singh, S. N.; Fatima, N.;
Chatterjee, R. K. J. Med. Chem. 1999, 42, 1667-1682.
(34) Zhou, H.; Liao, X.; Cook, J. M. Org. Lett. 2004, 6, 249-252.
J. Org. Chem, Vol. 70, No. 5, 2005 1943