New Iridoid Glucosides from Citharexylum
J ournal of Natural Products, 2002, Vol. 65, No. 11 1623
Ta ble 2. 1H NMR Data for Acetates 8-14 (300 MHz, chemical shifts in δ, coupling constants in Hz, CDCl3)
proton
8
9
10
11
12
13
14
1
3
5.37, d, J 1,9)1.8
7.40, d, J 3,5)0.6
5.41, d, J 1,9)1.8 5.41, d, J 1,9)1.5
7.43, d, J 3,5)0.9 7.43, d, J 3,5)<0.6
5.41, d, J 1,9)1.8
7.43, d, J 3,5)1.2
5.40, d, J 1,9)1.2
7.42, d, J 3,5)0.9
5.41, d, J 1,9)1.8
5.40, d, J 1,9)1.2
7.44, d, (obscured 7.42, d, J 3,5)<0.6
by 2′′)
5
2.96, ddd, J 5,3)0.6 3.08, ddd,
J 5,3)0.9
3.02, ddd, J 5,3)<0.6 3.07, ddd, J 5,3)1.2 3.01, ddd, J 5,3)0.6 3.07, ddd, J 5,3)1.5 3.01, ddd, J 5,3)0.9
J 5,6)1.2, J 5,9)9.3 J 5,6)2.0,
J 5,9)9.3
J 5,6)2.0, J 5,9)9.3
5.48, dd, J 6,5)2.0
J 5,6)1.8, J 5,9)9.3 J 5,6)1.8, J 5,9)9.3
5.53, dd, J 6,5)1.8 5.47, dd, J 6,5)1.8
J 5,6)2.1, J 5,9)9.3 J 5,6)1.8, J 5,9)9.3
5.52, dd, J 6,5)2.1 5.47, dd, J 6,5)1.8
6
7
8
5.39, dd, J 6,5)1.2 5.53, dd,
J 6,5)2.0
J 6,7)2.7
J 6,7)4.1
J 6,7)4.1
4.98, dd, J 7,6)4.1
J 6,7)3.9
J 6,7)4.2
J 6,7)3.9
J 6,7)4.2
4.80, dd, J 7,6)2.7 4.88, dd,
J 7,6)4.1
J 7,8)8.9
4.88, dd, J 7,6)3.9 4.97, dd, J 7,6)4.2
4.88, dd, J 7,6)3.9 4.96, dd, J 7,6)4.2
J 7,8)8.7
J 7,8)obsc.
J 7,8)8.7 J 7,8)obsc.
J 7,8)8.7 J 7,8)obsc.
2.48, ddq, J 8,7)8.7 2.57, ddq,
J 8,7)8.9
2.58, ddq, J 8,7)obsc. 2.56, ddq, J 8,7)8.7 2.58, ddq, J 8,7)obsc. 2.54, ddq, J 8,7)8.7 2.57, ddq, J 8,7)obsc.
J 8,9)9.6, J 8,10)7.5 J 8,9)9.3,
J 8,10)7.2
J 8,9)9.3, J 8,10)7.2
J 8,9)9.6, J 8,10)7.2 J 8,9)9.3, J 8,10)7.2
J 8,9)9.3, J 8,10)7.2 J 8,9)9.3, J 8,10)7.5
9
2.91, ddd, J 9,1)1.8 3.00, ddd,
J 9,1)1.8
2.97, ddd, J 9,1)1.5 2.99, ddd, J 9,1)1.8 2.97, ddd, J 9,1)1.2 2.98, ddd, J 9,1)1.8 2.97, ddd, J 9,1)1.2
J 9,5)9.3, J 9,8)9.6 J 9,5)9.3,
J 9,8)9.3
J 9,5)9.3, J 9,8)9.3
1.11, d, J 10,8)7.2
4.84, d, J 1′,2′)8.4
4.98, dd, J 2′,1′)8.4
J 9,5)9.3, J 9,8)9.6 J 9,5)9.3, J 9,8)9.3
J 9,5)9.3, J 9,8)9.3 J 9,5)9.3, J 9,8)9.3
1
1
2
0
′
1.05, d, J 10,8)7.5
1.09, d,
1.09, d, J 10,8)7.2
4.83, d, J 1′,2′)8.4
1.10, d, J 10,8)7.2
4.83, d, J 1′,2′)8.4
1.09, d, J 10,8)7.2
4.83, d, J 1′,2′)8.4
1.10, d, J 10,8)7.5
4.83, d, J 1′,2′)8.4
J 10,8)7.2
4.80, d, J 1′,2′)8.4
4.83, d,
J 1′,2′)8.4
′
4.95, dd, J 2′,1′)8.4 4.97, dd,
J 2′,1′)8.4
J 2′,3′)9.6
5.20, dd, J 3′,2′)9.6 5.22, dd,
J 3′,2′)9.6
J 3′,4′)9.6
5.08, dd, J 4′,3′)9.6 5.10, dd,
J 4′,3′)9.6
J 4′,5′)9.6
4.97, dd, J 2′,1′)8.4 4.98, dd, J 2′,1′)8.4
4.98, dd, J 2′,1′)8.4 4.98, dd, J 2′,1′)8.4
J 2′,3′)9.6
J 2′,3′)obsc.
J 2′,3′)9.6 J 2′,3′)obsc.
J 2′,3′)9.6 J 2′,3′)obsc.
3
4
5
′
′
′
5.22, dd, J 3′,2′)9.6
5.22, dd, J 3′,2′)9.6 5.22, dd, J 3′,2′)9.6
J 3′,4′)9.6 J 3′,4′)9.6
5.22, dd, J 3′,2′)9.6 5.22, dd, J 3′,2′)9.6
J 3′,4′)9.6 J 3′,4′)9.6
J 3′,4′)9.6
J 3′,4′)9.6
5.10, dd, J 4′,3′)9.6
5.10, dd, J 4′,3′)9.6 5.10, dd, J 4′,3′)9.6
5.10, dd, J 4′,3′)9.6 5.10, dd, J 4′,3′)9.6
J 4′,5′)9.6
J 4′,5′)9.6
J 4′,5′)9.6 J 4′,5′)9.6
J 4′,5′)9.6 J 4′,5′)9.6
3.74, ddd, J 5′,4′)9.6 3.76, ddd,
J 5′,4′)9.6
3.76, ddd, J 5′,4′)9.6 3.76, ddd, J 5′,4′)9.6 3.76, ddd, J 5′,4′)9.6 3.77, ddd, J 5′,4′)9.6 3.76, ddd, J 5′,4′)9.6
J 5′,6′a)2.4,
J 5′,6′b)4.5
J 5′,6′a)2.1,
J 5′,6′b)4.2
J 5′,6′a)2.1,
J 5′,6′b)4.4
J 5′,6′a)2.1,
J 5′,6′b)4.4
J 5′,6′a)2.1,
J 5′,6′b)4.5
J 5′,6′a)1.8,
J 5′,6′b)4.5
J 5′,6′a)1.8,
J 5′,6′b)4.2
6
6
′a
′b
4.14, dd, J 6′a,5′)2.4 4.16, dd,
4.15, dd, J 6′a,5′)2.1 4.16, dd, J 6′a,5′)2.1 4.15, dd, J 6′a,5′)2.1 4.16, dd, J 6′a,5′)1.8 4.15, dd, J 6′a,5′)1.8
J 6′a,5′)2.1
J 6′a,6′b)12.3
4.29, dd, J 6′b,5′)4.5 4.30, dd,
J 6′a,6′b)12.3
J 6′a,6′b)12.3
J 6′a,6′b)12.3
J 6′a,6′b)12.3
J 6′a,6′b)12.3
J 6′a,6′b)12.3
4.30, dd, J 6′b,5′)4.4 4.30, dd, J 6′b,5′)4.4 4.30, dd, J 6′b,5′)4.5 4.31, dd, J 6′b,5′)4.5 4.30, dd, J 6′b,5′)4.2
J 6′b,5′)4.2
J 6′b,6′a)12.3
CO2- 3.70, s
CH3
J 6′b,6′a)12.3
J 6′b,6′a)12.3
3.71, s
J 6′b,6′a)12.3
3.71, s
J 6′b,6′a)12.3
3.71, s
J 6′b,6′a)12.3
3.71, s
J 6′b,6′a)12.3
3.71, s
-
a
3.71, s
6.44, d,
J R,â)15.9
7.68, d,
J â,R)15.9
7.52-7.56
7.38-7.40
7.38-7.40
7.38-7.40
7.52-7.56
6.38, d, J R,â)15.9
7.65, d, J â,R)15.9
6.39, d, J R,â)15.9 6.33, d, J R,â)15.9
7.66, d, J â,R)15.9 7.62, d, J â,R)15.9
6.39, d, J R,â)15.9 6.32, d, J R,â)15.9
7.62, d, J â,R)15.9 7.58, d, J â,R)15.9
7.38, d, J 2′′,6′′)2.1 7.35, d, J 2′′,6′′)2.1
b
2
3
4
5
6
′′
7.50-7.53
7.37-7.40
7.37-7.40
7.37-7.40
7.37-7.53
7.55, d, J 2′′,3′′)8.4 7.53, d, J 2′′,3′′)8.4
7.13, d, J 3′′,2′′)8.4 7.12, d, J 3′′,2′′)8.4
′′
′′
′′
′′
7.13, d, J 5′′,6′′)8.4 7.12, d, J 5′′,6′′)8.4
7.55, d, J 6′′,5′′)8.4 7.53, d, J 6′′,5′′)8.4
7.24, d, J 5′′,6′′)8.4 7.22, d, J 5′′,6′′)8.4
7.42, dd, J 6′′,2′′)2.1 7.40, dd, J 6′′,2′′)2.1
J 6′′,5′′)8.4
1.90, 1.99
J 6′′,5′′)8.4
1.90, 2.01
ace-
tates
1.88, 1.99
1.90, 1.99
1.90, 2.00
1.90, 1.99
1.90, 2.00
1
2
.99, 2.02
.06, 2.09
2.00, 2.03
2.11
2.03, 2.07
2.10
2.00, 2.04
2.11, 2.32
2.03, 2.06
2.10, 2.31
2.01, 2.04
2.11, 2.31
2.04, 2.06
2.10, 2.30
2.31
2
.32
glucopyranosyl moiety at C-1 was confirmed as described
for 2 and 3, as was the stereochemistry. Compound 5 was
therefore determined to be 7-p-coumaryl-5-deoxypulchel-
loside I, named caudatoside D.
Caudatoside F (7) was shown to have the same molecular
formula as 6, C26 14, by analysis of the negative ion
32
H O
-
1
high-resolution ESIMS (m/z 567.1464 [M - H] ). The H
1
NMR data of 7 were very similar to the H NMR data of 5
(
7
Table 1) except for the aromatic region, again indicating
-substitution. The presence of a caffeoyl group was proven
Caudatoside E (6) was shown to have the molecular
formula C26
32
H O14 by analysis of the negative ion high-
-
1
as for 6. The glucopyranosyl moiety at C-1 was confirmed
as described for 2 and 3, as was the stereochemistry. From
these data, compound 7 was determined to be 7-caffeoyl-
resolution ESIMS (m/z 567.1683 [M - H] ). The H NMR
data of 6 (Table 1) were similar to the H NMR data of 2
1
and 4 except for the aromatic region, which clearly showed
the presence of either a caffeoyl or a feruloyl phenylpro-
panoid group sited at the O-6. HMBC was used to show
that the methyl signal at δ 3.64 was due to a methyl ester
at C-4, as described above for 4, thus making the phenyl-
propanoid moiety a caffeoyl group. The glucopyranosyl
moiety at C-1 was confirmed as described for 2 and 3, as
was the stereochemistry. From these data, compound 6 was
determined to be 6-caffeoyl-5-deoxypulchelloside I, named
caudatoside E.
5
-deoxypulchelloside I, named caudatoside F.
Other plant parts of C. caudatum were collected along
with the fruits. All parts were collected from Hawaii except
one sample of stemwood, which was collected from Panama.
Other Hawaiian samples include stems, stemwood, fruits/
inflorescence, and leaves. These five samples were ex-
tracted separately on a small scale with 95% ethanol for
24 h. These extracts were subjected to silica gel TLC as
well as RP-TLC (C18) along with the pure iridoids that were