Organic Letters
Letter
(7) Fryzuk, M. D.; Piers, W. E. Reactions of Binuclear Rhodium
Hydrides with Imines: Factors Influencing the Insertion of Carbon-
Nitrogen Double Bonds into Rhodium-Hydride Bonds. Organo-
metallics 1990, 9, 986−998.
(8) (a) Yu, H.; Zhang, G.; Huang, H. Palladium-Catalyzed
Dearomative Cyclocarbonylation via C-N Bond Activation. Angew.
Chem., Int. Ed. 2015, 54, 10912−10916. (b) Xie, Z.; Luo, S.; Zhu, Q.
Pd-Catalyzed C(sp2)-H Carbonylation of 2-Benzylpyridines for the
Synthesis of Pyridoisoquinolinones. Chem. Commun. 2016, 52,
12873−12876.
(9) (a) Graham, T. J. A.; Shields, J. D.; Doyle, A. G. Transition
Metal-Catalyzed Cross Coupling with N-acyliminium Ions Derived
from Quinolines and Isoquinolines. Chem. Sci. 2011, 2, 980−984.
(b) Sylvester, K. T.; Wu, K.; Doyle, A. G. Mechanistic Investigation of
the Nickel-Catalyzed Suzuki Reaction of N, O-Acetals: Evidence for
Boronic Acid Assisted Oxidative Addition and an Iminium Activation
Pathway. J. Am. Chem. Soc. 2012, 134, 16967−16970. (c) Chau, S. T.;
Lutz, J. P.; Wu, K.; Doyle, A. G. Nickel-Catalyzed Enantioselective
Arylation of Pyridinium Ions: Harnessing an Iminium Ion Activation
Mode. Angew. Chem., Int. Ed. 2013, 52, 9153−9156. (d) Lutz, J. P.;
Chau, S. T.; Doyle, A. G. Nickel-Catalyzed Enantioselective Arylation
of Pyridine. Chem. Sci. 2016, 7, 4105−4109.
ACKNOWLEDGMENTS
■
This research was supported by the National Natural Science
Foundation of China (Nos. 21790333, 21702197, and
21672199).
REFERENCES
■
(1) (a) Beller, M. Catalytic Carbonylation Reactions; Springer: Berlin,
̈
Germany, 2006. (b) Kollar, L. Modern Carbonylation Methods; Wiley−
VCH: Weinheim, Germany, 2008. (c) Wu, X.-F.; Neumann, H.;
Beller, M. Palladium-Catalyzed Carbonylative Coupling Reactions
BetweenAr-X and Carbon Nucleophiles. Chem. Soc. Rev. 2011, 40,
4986−5009. (d) Wu, X.-F.; Neumann, H.; Beller, M. Synthesis of
Heterocycles via Palladium-Catalyzed Carbonylations. Chem. Rev.
2013, 113, 1−35.
(2) (a) Kiss, G. Palladium-Catalyzed Reppe Carbonylation. Chem.
Rev. 2001, 101, 3435−3456. (b) Wu, X.-F.; Fang, X.; Wu, L.; Jackstell,
R.; Neumann, H.; Beller, M. Transition-Metal-Catalyzed Carbon-
ylation Reactions of Olefins and Alkynes: A Personal Account. Acc.
Chem. Res. 2014, 47, 1041−1053.
(3) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. Rings in Drugs. J.
Med. Chem. 2014, 57, 5845−5859.
(4) Trzeciak, A. M.; Ziolkowski, J. J. Structural and Mechanistic
Studies of Pd-Catalyzed C-C Bond Formation: The Case of
Carbonylation and Heck Reaction. Coord. Chem. Rev. 2005, 249,
2308−2322.
(10) (a) Martin, J. R.; Moreau, J.-L.; Jenck, F. Evaluation of the
Dependence Liability of Quinolizinones Acting as Partial Agonists at
the Benzodi Azepine Receptor. Drug Dev. Res. 1995, 36, 141−149.
(b) Chen, M.-H.; Fitzgerald, P.; Singh, S. B.; O’Neill, E. A.; Schwartz,
C. D.; Thompson, C. M.; O’Keefe, S. J.; Zaller, D. M.; Doherty, J. B.
Synthesis and Biological Activity of Quinolinone and Dihydroquino-
linone p38 MAP Kinase Inhibitors. Bioorg. Med. Chem. Lett. 2008, 18,
2222−2226. (c) Kim, J. H.; Gensch, T.; Zhao, D.; Stegemann, L.;
Strassert, C. A.; Glorius, F. RhIII-Catalyzed C-H Activation with
Pyridotriazoles: Direct Access to Fluorophores for Metal-Ion
Detection. Angew. Chem., Int. Ed. 2015, 54, 10975−10979.
(d) Zhao, D.; Kim, J. H.; Stegemann, L.; Strassert, C. A.; Glorius,
F. Cobalt(III)-Catalyzed Directed C-H Coupling with Diazo
Compounds: Straightforward Access towards Extended π-Systems.
Angew. Chem., Int. Ed. 2015, 54, 4508−4511.
(5) (a) Okuro, K.; Furuune, M.; Miura, M.; Nomura, M. Palladium-
Catalyzed Cross-Carbonylation of Aryl Iodides and 1-Aryl-2-Alkyn-1-
Ones. J. Org. Chem. 1992, 57, 4754−4756. (b) Satoh, T.; Itaya, T.;
Okuro, K.; Miura, M.; Nomura, M. Palladium-Catalyzed Cross-
Carbonylation of Aryl Iodides with Five-Membered Cyclic Olefins. J.
Org. Chem. 1995, 60, 7267−7271. (c) Okuro, K.; Alper, H. Palladium-
Catalyzed Carbonylation of o-Iodophenols with Allenes. J. Org. Chem.
1997, 62, 1566−1567. (d) Gagnier, S. V.; Larock, R. C. Palladium-
Catalyzed Carbonylative Cyclization of Unsaturated Aryl Iodides and
Dienyl Triflates, Iodides, and Bromides to Indanones and 2-
Cyclopentenones. J. Am. Chem. Soc. 2003, 125, 4804−4807. (e) Ye,
F.; Alper, H. Ionic-Liquid-Promoted Palladium-Catalyzed Multi-
component Cyclocarbonylation of o-Iodoanilines and Allenes To
Form Methylene-2,3-Dihydro-1H-Quinolin-4-Ones. J. Org. Chem.
2007, 72, 3218−3222. (f) Wu, X.-F.; Neumann, H.; Spannenberg,
A.; Schulz, T.; Jiao, H.; Beller, M. Development of a General
Palladium-Catalyzed Carbonylative Heck Reaction of Aryl Halides. J.
Am. Chem. Soc. 2010, 132, 14596−14602. (g) Wu, X.-F.; Neumann,
H.; Beller, M. Palladium-Catalyzed Coupling Reactions: Carbon-
ylative Heck Reactions To Give Chalcones. Angew. Chem., Int. Ed.
2010, 49, 5284−5288. (h) Bloome, K. S.; Alexanian, E. J. Palladium-
Catalyzed Carbonylative Heck-Type Reactions of Alkyl Iodides. J. Am.
Chem. Soc. 2010, 132, 12823−12825.
(6) (a) Kacker, S.; Kim, J. S.; Sen, A. Insertion of Imines into
Palladium-Acyl Bonds: Towards Metal-Catalyzed Alternating Co-
polymerization of Imines with Carbon Monoxide To Form
Polypeptides. Angew. Chem., Int. Ed. 1998, 37, 1251−1253.
(b) Dghaym, R. D.; Yaccato, K. J.; Arndtsen, B. A. The Novel
Insertion of Imines into a Late-Metal-Carbon σ-Bond: Developing a
Palladium-Mediated Route to Polypeptides. Organometallics 1998, 17,
4−6. (c) Davis, J. L.; Arndtsen, B. A. Comparison of Imine to Olefin
Insertion Reactions: Generation of Five- and Six-Membered Lactams
via a Nickel-Mediated CO, Olefin, CO, Imine Insertion Cascade.
Organometallics 2011, 30, 1896−1901. (d) Beller, M.; Eckert, M.
Amidocarbonylation-An Efficient Route to Amino Acid Derivatives.
Angew. Chem., Int. Ed. 2000, 39, 1010−1027. (e) Dghaym, R. D.;
Dhawan, R.; Arndtsen, B. A. The Use of Carbon Monoxide and
Imines as Peptide Derivative Synthons: A Facile Palladium-Catalyzed
Synthesis of a-Amino Acid Derived Imidazolines. Angew. Chem., Int.
Ed. 2001, 40, 3228−3230. (f) Bontemps, S.; Quesnel, J. S.; Worrall,
K.; Arndtsen, B. Palladium-Catalyzed Aryl Iodide Carbonylation as a
Route to Imidazoline Synthesis: Design of a Five-Component
Coupling Reaction. Angew. Chem., Int. Ed. 2011, 50, 8948−8951.
(11) Mullen, K.; Scherf, U. Organic Light Emitting Devices, Synthesis
̈
Properties and Applications; Wiley−VCH:Weinheim, Germany, 2005.
(12) Balfour, J. A.; McTavish, D.; Heel, R. C. Fenofibrate. Drugs
1990, 40, 260−290.
(13) (a) Palucki, M.; Finney, N. S.; Pospisil, P. J.; Guler, M. L.;
Ishida, T.; Jacobsen, E. N. The Mechanistic Basis for Electronic
Effects on Enantioselectivity in the (salen)Mn(III)-Catalyzed
Epoxidation Reaction. J. Am. Chem. Soc. 1998, 120, 948−954.
(b) Jones, W. D. Isotope Effects in C-H Bond Activation Reactions by
Transition Metals. Acc. Chem. Res. 2003, 36, 140−146. (c) Anslyn, E.
V.; Dougherty, D. A. Modern Physical Organic Chemistry; University
Science Books: Sausalito, CA, 2006; Chapter 8. (d) Gomez-Gallego,
M.; Sierra, M. A. Kinetic Isotope Effects in the Study of
Organometallic Reaction Mechanisms. Chem. Rev. 2011, 111,
4857−4963. (e) Simmons, E. M.; Hartwig, J. F. On the Interpretation
of Deuterium Kinetic Isotope Effects in C-H Bond Functionalizations
by Transition-Metal Complexes. Angew. Chem., Int. Ed. 2012, 51,
3066−3072.
(14) Hartwig, J. F. Organotransition Metal Chemistry: From Bonding
to Catalysis; University Science Books: Sausalito, CA, 2010; pp 349.
E
Org. Lett. XXXX, XXX, XXX−XXX