14 D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P.
Bruchez, F. W. Wise and W. W. Webb, Science, 2003, 300, 1434.
15 B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard, J. C.
Bhatt, R. Kannan, L. Yuan, G. S. He and P. N. Prasad, Chem.
Mater., 1998, 10, 1863.
16 G. S. He, J. D. Bhawalkar, C. F. Zhao and P. N. Prasad, Appl.
Phys. Lett., 1995, 67, 2433.
17 J. D. Bhawalkar, G. S. He and P. N. Prasad, Rep. Prog. Phys.,
1996, 59, 1041.
18 J. E. Ehrlich, X. L. Wu, L.-Y. Lee, Z.-Y. Hu, H. Roeckel, S. R.
Marder and J. Perry, Opt. Lett., 1997, 22, 1843.
Fig. 4 Density difference between the charge-transfer and ground
states of 2 in the gas phase. The light and dark areas represent the
electron loss and gain regions, respectively, upon excitation.
19 M. Albota, D. Beljonne, J.-L. Bredas, J. E. Ehrlich, J.-Y. Fu, A.
A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D.
McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Sub-
ramaniam, W. W. Webb, X.-L. Wu and C. Xu, Science, 1998, 281,
1653.
20 M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z.
Hu, D. M. Maughon, T. C. Parker, H. Rockel, S. Thayumanavan,
S. R. Marder, D. Beljonne and J.-L. Bredas, J. Am. Chem. Soc.,
2000, 122, 9500.
distributed at the two terminals of 2, indicating that it can give
away its electron to its surroundings. This result is in accord
with the conclusion of Cumpston et al.2 However, whether the
photoinduced electron-transfer reaction is energetically feasi-
ble needs further theoretical investigation.
21 Y.-X. Yan, X.-T. Tao, Y.-H. Sun, G.-B. Xu, C.-K. Wang, J.-X.
Yang, X. Zhao and M.-H. Jiang, J. Solid State Chem., 2004, 177,
3007.
4. Conclusions
22 M. Sigalov, A. Ben-Asuly, L. Shapiro, A. Ellern and V. Khodor-
kovsky, Tetrahedron Lett., 2000, 41, 8573.
23 Z. Kotler, J. Segal, M. Sigalov, A. Ben-Asuly and V. Khodor-
kovsky, Synth. Met., 2000, 115, 269.
Four symmetrical two-photon photopolymerization initiators
were synthesized and characterized. The crystal structure of 1
has been determined by X-ray single crystal diffraction analy-
sis, showing an asymmetric character. A similar asymmetry can
24 J. Segal, Z. Kotler, M. Sigalov, A. Ben-Asuly and V. Khodor-
kovsky, Proc. SPIE-Int. Soc. Opt. Eng., 1999, 3796, 153.
25 M. Silagov, A. Ben-Azuly, L. Shapiro and V. Khodorkovsky,
Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B, 2000, 25, 443.
26 X.-M. Wang, Y.-F. Zhou, W.-T. Yu, C. Wang, Q. Fang, M.-H.
Jiang, H. Lei and H.-Z. Wang, J. Mater. Chem., 2000, 10,
2698.
27 Y. Ren, X.-Q. Yu, D.-J. Zhang, D. Wang, M.-L. Zhang, G.-B.
Xu, X. Zhao, Y.-P. Tian, Z.-S. Shao and M.-H. Jiang, J. Mater.
Chem., 2002, 12, 3431.
1
be observed for 3. For 2 and 4, the H NMR and 13C NMR
spectra indicate that they are centrosymmetric. The photophy-
sical results illustrate that the four compounds are all good
two-photon absorbing chromophores and effective two-photon
photopolymerization initiators. The wavelengths for initiating
two-photon polymerization reactions of 1, 2, 3 and 4 are 760,
820, 830 and 830 nm, respectively. A possible mechanism is
based on a charge-transfer process when the laser irradiation
is applied.
28 B. Wang and M. R. Wasielewski, J. Am. Chem. Soc., 1997, 119,
12.
29 G. M. Sheldrick, SHELXL-97, Program for refinement of crystal
structures, University of Gottingen, Germany, 1997.
30 P. Fromherz, J. Phys. Chem., 1995, 99, 7188.
Acknowledgements
31 U. Narang, C. F. Zhao, J. D. Bhawalkar, F. V. Bright and
P. N. Prasad, J. Phys. Chem., 1996, 100, 4521.
32 C.-K. Wang, P. Macak, Y. Luo and H. Agren, J. Chem. Phys.,
2001, 114, 9813.
33 C. Wang, Y. Ren, Z.-S. Shao, X. Zhao, G.-Y. Zhou, D. Wang,
Q. Fang and M.-H. Jiang, Nonlinear Opt., 2001, 28, 1.
34 CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC
Press, Boca Raton, FL, 73rd edn., 1992–1993.
This work was supported by financial support from the
National Natural Science Foundation of China (grant no.
50323006, 50325311, 10274044) and the Swedish International
Development Cooperation Agency (SIDA). The authors also
thank Prof. Xiao-Ming Chen for his help in revising the
manuscript.
35 J. N. Demas and G. A. Crosby, J. Phys. Chem., 1971, 75, 991.
36 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr.,
R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D.
Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V.
Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C.
Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala,
Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman,
J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.
Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W.
Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon,
E. S. Replogle and J. A. Pople, GAUSSIAN 98 (Revision A.11),
Gaussian, Inc., Pittsburgh, PA, 2001.
37 T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen, K. Ruud, H.
Agren, A. A. Auer, K. L. Bak, V. Bakken, O. Christiansen, S.
Coriani, P. Dahle, E. K. Dalskov, T. Enevoldsen, B. Fernandez,
C. Hattig, K. Hald, A. Halkier, H. Heiberg, H. Hettema, D.
Jonsson, S. Kirpekar, R. Kobayashi, H. Koch, K. V. Mikkelsen,
P. Norman, M. J. Packer, T. B. Pedersen, T. A. Ruden, A.
Sanchez, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. O.
Sylvester-Hvid, P. R. Taylor and O. Vahtras, DALTON, a mole-
cular electronic structure program, Release 1.0, 1997.
38 P. Flukiger, H. P. Luthi, S. Portmann and J. Weber, MOLEKEL
4.0, Swiss Center for Scientific Computing, Manno, Switzerland,
2000 .
References
1
2
M. Saruo, O. Nakamura and S. Kawata, Opt. Lett., 1997, 22, 132.
B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E.
Ehrlich, L. L. Erskine, A. A. Keikal, S. M. Kuebler, I.-Y. S. Lee,
D. M. Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R.
Marder and J. W. Perry, Nature (London), 1999, 398, 51.
S. Kawata, H.-B. Sun, T. Tanaka and K. Takada, Nature
(London), 2001, 412, 697.
W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C.
K. Ober, J. W. Perry and S. R. Marder, Science, 2002, 296, 1106.
D. A. Parthenopoulos and P. M. Rentzepis, Science, 1989, 245,
843.
3
4
5
6
7
J. H. Strickler and W. W. Webb, Opt. Lett., 1991, 16, 1780.
A. S. Dvornikov and P. M. Rentzepis, Opt. Commun., 1995, 119,
341.
8
9
K. D. Belfield, Y. Liu, R. A. Negres, M. Fan, G. Pan, D. J. Hagan
and F. E. Hernandez, Chem. Mater., 2002, 14, 3663.
J. E. Ehrlich, X. L. Wu, L.-Y. Lee, Z.-Y. Hu, H. Roeckel, S. R.
Marder and J. Perry, Opt. Lett., 1997, 22, 1843.
10 G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt and
A. G. Dillard, Opt. Lett., 1995, 20, 435.
11 J. D. Bhawalkar, N. D. Kumar, C. F. Zhao and P. N. Prasad,
J. Clin. Laser Med. Surg., 1997, 15, 201.
12 W. Denk, J. H. Strickler and W. W. Webb, Science, 1990, 248, 73.
13 C. Xu, W. R. Zipfel, J. B. Shear, R. M. William and W. W. Webb,
Proc. Natl. Acad. Sci. USA, 1996, 93, 10763.
484
N e w J . C h e m . , 2 0 0 5 , 2 9 , 4 7 9 – 4 8 4