Amplification of Enantiomeric Excess of Organic Molecules
FULL PAPER
tion of nitrosobenzene (54 mg, 0.5 mmol) in DMSO (1 mL). The reaction
mixture was then left to stir for an additional 0.5 h (3h when tetrose 2a
was used). The reaction was quenched by putting the reaction mixture di-
rectly on a silica-gel column (pentane/EtOAc 10:1), which furnished pure
5 and 2 after chromatography. Analytical data of 5 are identical to previ-
ously reported values.[4] The ee was determined by chiral-phase HPLC
analysis (Diacel Chiralpak AD, n-Hex/iPrOH 90:10, flow rate
0.5 mLminÀ1, l=254 nm): minor isomer: tr =27.208 min, major isomer:
tr =31.791 min.
Acknowledgements
We gratefully acknowledge the Swedish National Research Council,
Wenner-Gren Foundation, Carl-Trygger Foundation and Lars-Hierta
Foundation for financial support.
[1] a) W. A. Bonner, Origins Life Evol. Biosphere 1991, 21, 59; b) J. L.
Bada, Nature 1995, 374, 594; c) S. F. Mason, Nature 1985, 314, 400.
[2] F. C. Frank, Biochim. Biophys. Acta 1953, 11, 459.
[3] K. Soai, T. Shibata, H. Morioka, K. Choji, Nature 1995, 378, 767; T.
Shibata, H. Morioka, T. Hayase, K. Choji, K. Soai, J. Am. Chem.
Soc. 1996, 118, 471; T. Shibata, J. Yamamoto, N. Matsumoto, S. Yo-
nekubo, S. Osanai, K. Soai, J. Am. Chem. Soc. 1998, 120, 12157; K.
Soai, I. Sato, Enantiomer 2001, 6, 189.
[4] a) J. Baily, A. Chrysostotomou, J. H. Hough, T. M. Gledhill, A.
McCall, S. Clark, F. MØnard, M. Tamura, Science 1998, 281, 672;
b) B. Norden, Nature 1977, 266, 567.
[5] J. R. Cronin, S. Pizzarello, Science 1997, 275, 951.
[6] S. Pizzarello, A. L. Weber, Science 2004, 303, 1151; J. Kofoed, M.
Machuqueiro, J. -L. Reymond, T. Darbre, Chem. Commun. 2004,
1540.
[7] S. P. Mathew, H. Iwamura, D. Blackmond, Angew. Chem. 2004, 116,
3379; Angew. Chem. Int. Ed. 2004, 43, 3317; H. Iwamura, S. P.
Mathew, D. Blackmond, J. Am. Chem. Soc. 2004, 126, 11770.
[8] A. Córdova, H. SundØn, M. Engqvist, I. Ibrahem, J. Casas, J. Am.
Chem. Soc. 2004, 126, 8914.
[9] G. Cooper, N. Kimmich, W. Belisle, J. Sarinana, K. Brabham, L.
Garrel, Nature 2001, 414, 879.
[10] J. Casas, M. Engqvist, I. Ibrahem, B. Kaynak, A. Córdova, Angew.
Chem. 2005, 117, 1367; Angew. Chem. Int. Ed. 2005, 44, 1343.
[11] A. Córdova, M. Engqvist, I. Ibrahem, J. Casas, H. SundØn, Chem.
Commun. 2005, 2047–2049.
Typical experimental procedure for the kinetic study of the (S)-proline-
catalyzed formation of ketone 5 (Figure 4, *, black): A solution of nitro-
sobenzene (54 mg, 0.5 mmol) in DMSO (1 mL) was slowly added with sy-
ringe pump to a homogeneous mixture containing (S)-proline (6 mg,
10 mol%), cyclohexanone (1 mmol), and DMF (0.155 mmol, 12 ml, inter-
nal standard) in DMSO (1 mL). Aliquots (25 mL) were taken out from
the homogeneous reaction mixture and diluted with CDCl3 and the prog-
1
ress of the reaction was monitored by H NMR analyses. The ratio of the
area of the quintet at d=4.35 ppm corresponding to the CHONHAr
proton of 5 and the area of the broad singlet at d=7.93ppm correspond-
ing to a formamide proton of DMF (A5/Ainternal standard) was directly corre-
lated to the known calibration curve and gave the product formation as a
function of time.
[12] P. I. Dalko, L. Moisan, Angew. Chem. 2004, 116, 5248; Angew.
Chem. Int. Ed. 2004, 43, 5138.
Typical experimental procedure for the kinetic study of the (S)-proline-
and (R)-proline-catalyzed formation of ketone 5 in the presence of te-
~
&
[13] a) Z. G. Hajos, D. R. Parrish, J. Org. Chem. 1974, 39, 1615, and ref-
erences therein. b) B. List, C. F. Barbas III, R. A. Lerner, J. Am.
Chem. Soc. 2000, 122, 2395; c) A. B. Northrup, I. K. Mangion, F.
Hettche, D. W. C. MacMillan, Angew. Chem. 2004, 116, 2204;
Angew. Chem. Int. Ed. 2004, 43, 2152; d) A. B. Northrup, D. W. C.
MacMillan, J. Am. Chem. Soc. 2002, 124, 6798.
trose 2b (Figure 4, , blue and , red, respectively): A solution of tetrose
2b (1 mmol, 98% ee) and (S)- or (R)-proline (6 mg, 10 mol%) in DMSO
(1 mL) was left to stir for 1 h. The reaction mixture became homogene-
ous after it had been stirred for 2 min. Next, cyclohexanone 5 (1 mmol)
and DMF (0.155 mmol, 12 mL, internal standard) was added, followed by
slow addition with a syringe pump over 1 h of a solution of nitrosoben-
zene (54 mg, 0.5 mmol) in DMSO (1 mL). Aliquots (25 mL) were taken
out from the homogeneous reaction mixture and diluted with CDCl3, and
the progress of the reaction was monitored by 1H NMR analyses. The
ratio of the area of the quintet at d=4.35 ppm corresponding to the
CHONHAr proton of 5 and the area of the broad singlet at d=7.93ppm
corresponding to formamide proton of DMF (A5/Ainternal standard) was di-
rectly correlated to the known calibration curve and gave the product
formation as a function of time.
[14] a) L. Hoang, S. Bahmanyar, K. N. Houk, B. List, J. Am. Chem. Soc.
2003, 125, 16; b) for original work on nonlinear effect in proline-cat-
alyzed reactions see: C. Puchot, O. Samuel, E. DuÇach, S. Zhao, C.
Agami, H. B. Kagan, J. Am. Chem. Soc. 1986, 108, 2353.
[15] a) A. Córdova, I. Ibrahem, J. Casas, H. SundØn, M. Engqvist, E.
Reyes, Chem. Eur. J. 2005, 11, 4772; b) E. Reyes, A. Córdova, Tetra-
hedron Lett. 2005, 46, 6605. Proline can also react with glucose ac-
cording to the Maillard reaction see: c) I. Blank, S. Devaud, W. Mat-
they-Doret, F. Robert, J. Agric. Food Chem. 2003, 51, 3643–3650.
[16] a) A. Bøgevig, H. SundØn, A. Córdova, Angew. Chem. 2004, 116,
1129; Angew. Chem. Int. Ed. 2004, 43, 1109; b) Y. Hayashi, J. Yama-
guchi, K. Hibino, M. Shoji, Angew. Chem. 2004, 116, 1132; Angew.
Chem. Int. Ed. 2004, 43, 1112; c) P. Merino, T. Tejero, Angew. Chem.
2004, 116, 3055; Angew. Chem. Int. Ed. 2004, 43, 2995; d) A. Córdo-
va, H. SundØn, A. Bøgevig, M. Johansson, F. Himo, Chem. Eur. J.
2004, 10, 3673; e) P. H.-Y. Cheong, K. N. Houk, J. Am. Chem. Soc.
2004, 126, 13912.
[17] E. M. Vogel, H. Grçger, M. Shibasaki, Angew. Chem. 1999, 111,
1672; Angew. Chem. Int. Ed. 1999, 38, 1570; see also: J. E. Imbriglio,
M. M. Vasbinder, S. J. Miller, Org. Lett. 2003, 5, 3741.
[18] B. List, L. Hoang, H. J. Martin, Proc. Natl. Acad. Sci. USA 2004,
101. 5839.; H. Iwamura, D. H. Wells, J. S. P. Mathew, M. Klussmann,
A. Armstrong, D. G. Blackmond, J. Am. Chem. Soc. 2004, 126,
16312; A. Hartikka, P. I. Arvidsson, Eur. J. Org. Chem. 2005, 4287.
[19] K. Furuta, S. Shimizu, S. Miwa, H. Yamamoto, J. Org. Chem. 1989,
54, 1481.
Typical experimental procedure for the NMR experiments between glyc-
eraldehyde 2g and proline:
(0.347 mmol, >98% ee) and (S)- or (R)-proline (0.087 mmol) in DMSO
(1 mL) was left to stir for 1 h in [D6]DMSO (1 mL). Next, H NMR anal-
ysis was performed, which showed that all (S)- or (R)-proline had reacted
with aldehyde 2g and formed the corresponding oxazolidinones I or II,
respectively.
A
solution of glyceraldehyde 2h
1
Typical experimental procedure for the NMR experiments between glyc-
eraldehydes 2g and racemic proline: A solution of glyceraldehyde 2h
(0.043mmol, >98% ee) and (S),(R)-proline (0.087 mmol) in DMSO
(1 mL) was left to stir for 15 min in [D6]DMSO (1 mL). Next, 1H NMR
analysis was performed, which showed that the ratio between the corre-
sponding oxazolidinones I and II was 1.53.
Received: April 13, 2006
Published online: June 13, 2006
Chem. Eur. J. 2006, 12, 5446 – 5451
ꢁ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5451