Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid, and Tryptophan
Kaur and Srivastava
various species in the standard quaternary mixture, the
scope of Fe-Nano-ZSM-5 modified electrode was extended
for real samples. Two different kinds of blood serum and
urine samples were analyzed using LSV. The results indi-
cate that Fe-Nano-ZSM-5 modified electrode has a good
reliable operational ability (Table IV). The interference
of other molecules in the samples for the determination
of the AA, DA, UA, and Trp was not found. Therefore,
the Fe-Nano-ZSM-5 based sensor provides an economical,
simple, and efficient protocol for the simultaneous deter-
mination of these compounds in biological and pharma-
ceutical samples.
4. G. G. Guilbault, Analytical Uses of Immobilized Enzymes, Marcel
Dekker, New York (1984).
5. A. H. Liu, I. Honma, and H. S. Zhou, Biosens. Bioelectron. 21, 809
(2005).
6. J. W. Mo and B. Ogorevc, Anal. Chem. 73, 1196 (2001).
7. O. Arrigoni and C. D. Tullio, Biochim. Biophys. Acta 1569, 1 (2002).
8. R. D. O. Neil, Analyst 119, 767 (1994).
9. (a) B. Habibia and M. H. P. Azar, Electrochim. Acta 55, 5492 (2010);
(b) W. Zhang, R. Yuan, Y. Q. Chai, Y. Zhang, and S. H. Chen, Sens.
Actuat. B: Chem. 166, 601 (2012); (c) Z. H. Sheng, X. Q. Zheng,
J. Y. Xu, W. J. Bao, F. B. Wang, and X. H. Xia, Biosens. Bioelec-
tron. 34, 125 (2012); (d) X. Ying, Z. Hong, W. Zhijiao, L. Xiangjun,
H. Yujian, and Y. Zhuobin, J. Nanosci. Nanotechnol. 13, 1563 (2013).
10. (a) D. Han, T. Han, C. Shan, A. Ivaska, and L. Niu, Electroanal-
ysis 22, 2001 (2010); (b) J. Huang, Y. Liu, H. Hou, and T. You,
Biosens. Bioelectron. 24, 632 (2008); (c) B. Zhang, D. Huang,
X. Xu, G. Alemu, Y. Zhang, F. Zhan, Y. Shen, M. W. B. Zhang,
D. Huang, X. Xu, G. Alemu, Y. Zhang, F. Zhan, Y. Shen, and
M. Wang, Electrochim. Acta 91, 261 (2013); (d) S. Mahshid, S. Luo,
L. Yang, S. S. Mahshid, M. Askari, A. Dolati, and Q. Cai, J. Nanosci.
Nanotechnol. 11, 6668 (2011); (e) Z. Wu, H. Zhao, Y. Xue, X. Li,
Y. He, and Z. Yuan, J. Nanosci. Nanotechnol. 11, 1013 (2011);
(f) S. Mahshid, S. Luo, L. Yang, S. S. Mahshid, M. Askari, A. Dolati,
and Q. Cai, J. Nanosci. Nanotechnol. 11, 6668 (2011).
11. C. Wang, R. Yuan, Y. Chai, S. Chen, F. Hu, and M. Zhang, Anal.
Chim. Acta 741, 15 (2012).
12. M. U. Anu Prathap and R. Srivastava, Sens. Actuat. B: Chem. 117,
239 (2013).
13. A. Corma, Chem. Rev. 97, 2373 (1997).
14. J. Eric, D. Davies, and N. Jabeen, J. Inclusion Phenom. Macrocycl.
Chem. 46, 57 (2003).
15. C. S. Cundy and P. A. Cox, Chem. Rev. 103, 663 (2003).
16. R. Srivastava, N. Iwasa, S. I. Fujita, and M. Arai, Progress in Porous
Media Research, Nova Science Publisher, New York (2009), p. 1.
17. Y. Tao, H. Kanoh, L. Abrams, and K. Kaneko, Chem. Rev. 106, 896
(2006).
18. J. Pérez-Ramírez, C. H. Christensen, K. Egeblad, and J. C. Groen,
Chem. Soc. Rev. 37, 2530 (2008).
19. R. Srivastava, N. Iwasa, S. I. Fujita, and M. Arai, Chem. Eur. J. 14,
9507 (2008).
4. CONCLUSIONS
In this work, transition metal exchanged nanocrytsalline
ZSM-5 modified electrodes were constructed and used
in the electrochemical oxidation of four important bio-
molecules of physiological relevance. Transition metal
exchanged nanocrystalline ZSM-5 modified electrode
exhibited high electrocatalytic activities towards the oxi-
dation of AA, DA, UA, and Trp by significantly decreas-
ing their oxidation over potentials and enhancing the
anodic peak currents. The modification of transition metal
exchanged nanocrystalline ZSM-5 not only improves the
electrochemical catalytic activities towards the oxidation
of AA, DA, UA, and Trp, but also resolves the merged
Delivered by Publishing Technology to: Chinese University of Hong Kong
oxidation peaks of AA, DA, UA, and Trp into four well-
IP: 172.79.99.67 On: Mon, 28 Dec 2015 11:14:23
defined peaks, which is very important for simultaneous
Copyright: American Scientific Publishers
determination of these analytes. The results demonstrate
that Fe-Nano-ZSM-5 has higher catalytic activities towards
the oxidation of AA, DA, UA, and Trp with good stabil-
ity, sensitivity, and selectivity. High selectivity and good
antifouling property encouraged us to use Fe-Nano-ZSM-5
modified electrode for the simultaneous determination of
AA, DA, UA, and Trp in human blood serum and UA in
urine samples. Highly dispersed metal ions on large sur-
face area Nano-ZSM-5 matrix and inter-crystalline meso-
pores (for enhance diffusion of reactants and products
molecules) are responsible for the high electrocatalytic
activity of M-Nano-ZSM-5. The analytical performance of
this sensor can also be evaluated for electrochemical detec-
tion of other electroactive bio-molecules.
20. (a) R. Kore, B. Satpati, and R. Srivastava, Chem. Eur. J. 17, 14360
(2011); (b) R. Kore and R. Srivastava, RSC Adv. 2, 10072 (2012);
(c) R. Kore, R. Sridharkrishna, and R. Srivastava, RSC Adv. 3, 1317
(2013); (d) R. Kore and R. Srivastava, Catal. Commun. 18, 11
(2012).
21. (a) D. Gligor, S. F. Balaj, A. Maicaneanu, R. Gropeanu, I. Grosu,
L. Muresan, and I. C. Popescu, Mater. Chem. Phys. 113, 283 (2009);
(b) B. Kaur, M. U. Anu Prathap, and R. Srivastava, ChemPlusChem
77, 1119 (2012).
22. A. J. Bard and L. R. Faulkner, Electrochemical Methods-
Fundamentals and Applications, John Wiley and Sons, New York
(2000).
23. M. Sharp, M. Petersson, and K. Edstrom, J. Electroanal. Chem.
95, 123 (1979).
24. A. J. Bard and L. R. Faulkner, Electrochemical Methods, Fundamen-
tals and Applications, Wiley, New York (2001).
25. Z. Galus, Fundamentals of Electrochemical Analysis, Ellis Horwood,
New York (1976).
Acknowledgments: Authors thank Department of Sci-
ence and Technology, New Delhi for financial assistance
(DST grant SB/S1/PC-91/2012). Balwinder Kaur is grate-
ful to CSIR, New Delhi for JRF fellowship.
26. M. M. Moawad, J. Coord. Chem. 18, 61 (2002).
27. J. Wang, Y. Wang, H. Lv, F. Hui, Y. Mu, S. Lu, S. Sha, and Q. E.
Wang, J. Electroanal. Chem. 594, 59 (2006).
28. S. M. MacDonald and S. G. Roscoe, Electrochim. Acta 42, 1189
(1997).
References and Notes
1. G. Chen, J. S. Cheng, and J. N. Ye, Fresenius. J. Anal. Chem. 370,
930 (2001).
2. M. I. Evgen’ev and I. I. Evgen’eva, J. Anal. Chem. 55, 741 (2000).
3. C. R. Raj, F. Kitamura, and T. Ohsaka, Analyst 9, 1155 (2002).
29. M. Hosseini, M. M. Momeni, and M. Faraji, J. Appl. Electrochem.
40, 1421 (2010).
Received: 7 March 2013. Accepted: 11 April 2013.
6550
J. Nanosci. Nanotechnol. 14, 6539–6550, 2014