Molecules 2021, 26, 838
11 of 12
21. Lou, J.D.; Xu, Z.N. Selective oxidation of primary alcohols with chromium trioxide under solvent free conditions. Tetrahedron Lett
22. Parmeggiani, C.; Matassini, C.; Cardona, F. A step forward towards sustainable aerobic alcohol oxidation: New and revised
catalysts based on transition metals on solid supports. Green Chem. 2017, 19, 2030–2050. [CrossRef]
23. Sheldon, R.A.; Arends, I.W.C.E.; Ten Brink, G.J.; Dijksman, A. Green, catalytic oxidations of alcohols. Acc. Chem. Res. 2002, 35,
24. Piera, J.; Backvall, J.E. Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron
transfer—A biomimetic approach. Angew. Chem. Int. Ed. 2008, 47, 3506–3523. [CrossRef]
25. Lu, T.L.; Du, Z.T.; Liu, J.X.; Ma, H.; Xu, J. Aerobic oxidation of primary aliphatic alcohols over bismuth oxide supported platinum
catalysts in water. Green Chem. 2013, 15, 2215–2221. [CrossRef]
26. Abednatanzi, S.; Derakhshandeh, P.G.; Abbasi, A.; Van der Voort, P.; Leus, K. Direct synthesis of an Iridium(III) bipyridine
metal-organic framework as a heterogeneous catalyst for aerobic alcohol oxidation. ChemCatChem 2016, 8, 3672–3679. [CrossRef]
27. Zeng, X.M.; Chen, J.M.; Yoshimura, A.; Middleton, K.; Zhdankin, V.V. SiO2–supported RuCl3/3–(dichloroiodo)benzoic acid:
Green catalytic system for the oxidation of alcohols and sulfides in water. RSC Adv. 2011, 1, 973–977. [CrossRef]
28. Ganesamoorthy, S.; Tamizh, M.M.; Shanmugasundaram, K.; Karvembu, R. Immobilization of Ru(III) complex on silica: A
heterogenized catalyst for selective oxidation of alcohols in water at room temperature. Tetrahedron Lett. 2013, 54, 7035–7039.
29. Clerick, S.; De Canck, E.; Hendrickx, K.; Van Speybroeck, V.; Van der Voort, P. Heterogeneous Ru(III) oxidation catalysts via ’click’
bidentate ligands on a periodic mesoporous organosilica support. Green Chem. 2016, 18, 6035–6045. [CrossRef]
30. Ganesh Babu, S.; Krishnamoorthi, R.; Thiruneelakandan, R.; Karvembu, R. V2O5 Anchored RuO2: An efficient nanocatalyst for
aerial oxidation of alcohols. Catal. Lett. 2014, 144, 1245–1252. [CrossRef]
31. Wang, S.S.; Zhang, J.; Zhou, C.L.; Vo–Thanh, G.; Liu, Y. An ionic compound containing Ru(III)–complex cation and phospho-
tungstate anion as the efficient and recyclable catalyst for clean aerobic oxidation of alcohols. Catal. Commun. 2012, 28, 152–154.
32. Zahmakiran, M.; Özkar, S. Zeolite confined nanostructured dinuclear ruthenium clusters: Preparation, characterization and
catalytic properties in the aerobic oxidation of alcohols under mild conditions. J. Mater. Chem. 2009, 19, 7112–7118. [CrossRef]
33. Guo, H.J.; Liu, W.D.; Yin, G.C. Aerobic oxidation of alcohols to aldehydes and ketones using ruthenium(III)/Et3N catalyst. Appl
Organomet. Chem. 2011, 25, 836–842. [CrossRef]
34. Sodhi, R.K.; Paul, S.; Clark, J.H. A comparative study of different metal acetylacetonates covalently anchored onto amine
functionalized silica: A study of the oxidation of aldehydes and alcohols to corresponding acids in water. Green Chem. 2012, 14,
35. Hug, S.; Tauchert, M.E.; Li, S.; Pachmayr, U.E.; Lotsch, B.V. A functional triazine framework based on N–heterocyclic building
blocks. J. Mater. Chem. 2012, 22, 13956–13964. [CrossRef]
36. Bagherzadeh, M.; Karimi, H.; Amini, M. Immobilization of dioxomolybdenum(VI) Schiff base complex on graphene oxide
nanosheets and its catalytic activity for oxidation of sulfides. J. Coord. Chem. 2017, 70, 2986–2998. [CrossRef]
37. Osadchii, D.Y.; Olivos–Suarez, A.I.; Bavykina, A.V.; Gascon, J. Revisiting nitrogen species in covalent triazine frameworks.
38. Chen, L.Y.; Huang, B.B.; Qiu, X.; Wang, X.; Luque, R.; Li, Y.W. Seed–mediated growth of MOF–encapsulated Pd@Ag core–shell
nanoparticles: Toward advanced room temperature nanocatalysts. Chem. Sci. 2016, 7, 228–233. [CrossRef] [PubMed]
39. Watanabe, H.; Asano, S.; Fujita, S.; Yoshida, H.; Arai, M. Nitrogen–doped, metal–free activated carbon catalysts for aerobic
oxidation of alcohols. ACS Catal. 2015, 5, 2886–2894. [CrossRef]
40. Abednatanzi, S.; Derakhshandeh, P.G.; Leus, K.; Vrielinck, H.; Callens, F.; Schmidt, J.; Savateev, A.; Van der Voort, P. Metal–free
activation of molecular oxygen by covalent triazine frameworks for selective aerobic oxidation. Sci. Adv. 2020, 6, eaaz2310.
41. Abednatanzi, S.; Derakhshandeh, P.G.; Tack, P.; Muniz–Miranda, F.; Liu, Y.Y.; Everaert, J.; Meledina, M.; Vanden Bussche, F.;
Vincze, L.; Stevens, C.V.; et al. Elucidating the promotional effect of a covalent triazine framework in aerobic oxidation. Appl.
Catal. B Environ. 2020, 269, 118769. [CrossRef]
42. Wang, J.S.; Jin, F.Z.; Ma, H.C.; Li, X.B.; Liu, M.Y.; Kan, J.L.; Chen, G.J.; Dong, Y.B. Au@Cu(II)–MOF: Highly efficient bifunctional
heterogeneous catalyst for successive oxidation–condensation reactions. Inorg. Chem. 2016, 55, 6685–6691. [CrossRef]
43. Qi, Y.; Luan, Y.; Peng, X.; Yang, M.; Hou, J.Y.; Wang, G. Design and synthesis of an Au@MIL–53(NH2) catalyst for a one–pot
aerobic oxidation/knoevenagel condensation reaction. Eur. J. Inorg. Chem. 2015, 2015, 5099–5105. [CrossRef]
44. Aryanejad, S.; Bagherzade, G.; Farrokhi, A. Efficient and recyclable novel Ni–based metal–organic framework nanostructure
as catalyst for the cascade reaction of alcohol oxidation-Knoevenagel condensation. Appl. Organomet. Chem. 2018, 32, e3995.
45. Miao, Z.C.; Luan, Y.; Qi, C.; Ramella, D. The synthesis of a bifunctional copper metal organic framework and its application in the
aerobic oxidation/Knoevenagel condensation sequential reaction. Dalton Trans. 2016, 45, 13917–13924. [CrossRef] [PubMed]
46. Sun, Q.; Aguila, B.; Ma, S.Q. A bifunctional covalent organic framework as an efficient platform for cascade catalysis. Mater.
Chem. Front. 2017, 1, 1310–1316. [CrossRef]