centration of 1b was maintained at 1 ꢂ 10ꢁ3 M, and the
concentration of 8 was varied from 0 to 6 ꢂ 10ꢁ3 M. The
proton chemical shifts were measured as a function of the
donor/acceptor ratio, and the complex formation constants
were then calculated using the HYPNMR program.14
.
Complex [1b 3b]. Yellowish crystals, mp 255–260 1C (de-
comp.). IR n/cmꢁ1: 3171, 3130, 3088 (NH). Anal. calcd. for
C52H78Cl4N4O28 ꢀ 2H2O: C, 45.09; H, 5.97; N, 4.05; found: C,
45.12; H, 5.94; N, 3.82%.
.
Complex [1b 4b]. Yellow crystals, mp 185–190 1C. IR
n/cmꢁ1: 3175, 3151 (NH). Anal. calcd. for C52H76Cl4N4O28
ꢂ 1.5H2O: C, 45.46; H, 5.80; N, 4.08; found: C, 45.40; H, 5.97;
N, 3.98%.
Acknowledgements
Support from the Russian Foundation for Basic Research
(Projects 02-03-32286, 03-03-32178, and 03-03-32929), the
INTAS (Grants 2001-0267 and YSF99-4051), the President
of the Russian Federation (Grants MK-3666.2004.3 and MK-
3697.2004.3), the Russian Science Support Foundation, the
Russian Academy of Sciences, the Royal Society (L.G.K. and
A.I.V.), the Royal Society of Chemistry for the RSC Journal
Grants for International Authors (L.G.K. and A.V.C.), the
EPSRC for a Senior Research Fellowship (J.A.K.H.), and the
University of Umea in the framework of a joint project of
the University of Umea and the Photochemistry Center of the
Russian Academy of Sciences (CRDF, Grant RC0-872) is
gratefully acknowledged.
.
Complex [1b (8)2]. Yellowish crystals, mp 207–209 1C. IR
n/cmꢁ1: 3177, 3150 (NH). Anal. calcd. for C52H80Cl4N4O28: C,
46.23; H, 5.97; N, 4.15; found: C, 46.25; H, 6.03; N, 3.96%.
Crystallographic study
Crystals of 1a, b suitable for the X-ray diffraction experiment
were grown by slow evaporation of CH2Cl2–hexane solutions.
The single crystals were coated with perfluorinated oil and
mounted on a Bruker SMART-CCD diffractometer (Mo-Ka
radiation, o scan mode, 0.31 frame, 15 s per frame). The
structures were solved by direct methods and refined by full-
matrix least-squares on F2 in the anisotropic approximation for
all non-hydrogen atoms. The hydrogen atoms were located
from difference Fourier synthesis and refined in the isotropic
approximation. The SHELXS-86 and SHELXL-97 software18
were used for structure solution and refinement.
References
1
(a) Cation Binding by Macrocycles, eds. Y. Inoue and G. W.
Gokel, Marcel Dekker, New York, 1990; (b) R. M. Izatt, K.
Pawlak, J. S. Bradshaw and R. L. Bruening, Chem. Rev., 1991, 91,
1721; (c) J.-M. Lehn, Supramolecular Chemistry. Concepts and
Perspectives, VCH, Weinheim, 1995.
2
(a) H.-G. Lohr and F. Vogtle, Acc. Chem. Res., 1985, 18, 65; (b) P.
¨
¨
de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley,
C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem. Rev., 1997,
97, 1515; (c) M. V. Alfimov and S. P. Gromov, in Applied
fluorescence in chemistry, biology, and medicine, eds. W. Rettig,
B. Strehmel, S. Schrader and H. Seifert, Springer-Verlag, Berlin,
1999, pp. 161–178; (d) B. Valeur and I. Leray, Coord. Chem. Rev.,
2000, 205, 3.
(a) V. Balzani, A. Credi and M. Venturi, Molecular devices and
machines – A Journey in the Nano World, Wiley-VCH, Weinheim,
2003; (b) Molecular Switches, ed. B. L. Feringa, Wiley-VCH,
Weinheim, 2001; (c) J. D. Badjic, V. Balzani, A. Credi, S. Silvi
and J. F. Stoddart, Science, 2004, 303, 1845.
(a) S. Shinkai, in Comprehensive Supramolecular Chemistry, ed.
J.-M. Lehn, Pergamon Press, New York, 1996, vol. 1; (b) S. P.
Gromov and M. V. Alfimov, Russ. Chem. Bull., 1997, 46, 611; (c)
V. Lokshin, A. Samat and A. V. Metelitsa, Russ. Chem. Rev.,
2002, 71, 893; (d) D. G. Amirsakis, A. M. Elizarov, M. A. Garcia-
Garibay, P. T. Glink, J. F. Stoddart, A. J. P. White and D. J.
Williams, Angew. Chem. Int. Ed., 2003, 42, 1126; (e) M. V.
Alfimov, O. A. Fedorova and S. P. Gromov, J. Photochem.
Photobiol., A, 2003, 158, 183.
(a) S. P. Gromov, E. N. Ushakov, A. I. Vedernikov, N. A.
Lobova, M. V. Alfimov, Yu. A. Strelenko, J. K. Whitesell and
M. A. Fox, Org. Lett., 1999, 1, 1697; (b) E. N. Ushakov, S. P.
Gromov, A. I. Vedernikov, E. V. Malysheva, A. A. Botsmanova,
M. V. Alfimov, B. Eliasson, U. G. Edlund, J. K. Whitesell and
M. A. Fox, J. Phys. Chem. A, 2002, 106, 2020.
Crystal data for 1a. C18H20O4, M ¼ 300.34, monoclinic, a ¼
8.9484(5), b ¼ 6.7152(3), c ¼ 12.4323(7) A, b ¼ 92.500(3)1, V ¼
746.35(7) A3, T ¼ 120.0(2) K, space group P21/c (no. 14),
Z ¼ 2, l(Mo-Ka) ¼ 0.710 73 A, 2775 reflections measured,
1064 unique (Rint ¼ 0.0278) which were used in all calculations.
The final R1 and wR2 were 0.0339 and 0.0844 for I 4 2s(I),
0.0448 and 0.0892 for all data.
3
4
Crystal data for 1b. C34H48O12, M ¼ 648.72, monoclinic, a ¼
42.778(2), b ¼ 9.0073(3), c ¼ 8.6096(3) A, b ¼ 95.988(2)1, V ¼
3299.3(2) A3, T ¼ 100.0(2) K, space group C2/c (no. 15), Z ¼ 4,
l(Mo-Ka) ¼ 0.710 73 A, 8379 reflections measured, 2900
unique (Rint ¼ 0.0661) which were used in all calculations.
The final R1 and wR2 were 0.0435 and 0.0839 for I 4 2s(I),
0.0829 and 0.0949 for all data.
CCDC reference numbers 232849 and 238954.
tallographic data in CIF or other electronic format.
5
6
UV/Vis spectroscopy
Absorption spectra were recorded on a Specord-M40 spectro-
photometer. Luminescence spectra were measured on a Shi-
madzu RF-5000 spectrofluorimeter. The complexation
equilibria were studied in anhydrous acetonitrile (water
o0.01%) at 22 ꢃ 2 1C. The complex formation constants were
measured using the procedures described previously.5b The
stability constants for the 1 : 1 D–A complexes between 1b
and 2b–4b or 2c are measured relative to the 1 : 1 complex of 1b
with 1,10-decanediammonium diperchlorate (log K1 ¼ 7.58,
ref. 5b).
(a) R. Foster, Organic Charge-Transfer Complexes, Academic
Press, New York, 1969; (b) P. Bruni and G. Tosi, Gazz. Chim.
Ital., 1997, 127, 435.
7
8
¨
G. Lindsten, O. Wennerstrom and B. Thulin, Acta Chem. Scand.,
Ser. B, 1986, 40, 545.
(a) C. Luis, M. M. Cid, R. Domingeuez, J. A. Seijas and M. C.
Villaverde, Heterocycles, 1990, 31, 1271; (b) P. Y. White and L. A.
Summers, Aust. J. Chem., 1977, 30, 1153.
L. G. Kuz’mina, A. V. Churakov, J. A. K. Howard, A. I.
Vedernikov, N. A. Lobova, A. A. Botsmanova, M. V. Alfimov
and S. P. Gromov, Crystallogr. Rep., 2005, 50, 234 [Transl. from
Kristallografiya, 2005, 50, 266 (in Russian)].
9
1H NMR titration
10 S. P. Gromov, A. I. Vedernikov, E. N. Ushakov, L. G. Kuz’mina,
A. V. Feofanov, V. G. Avakyan, A. V. Churakov, Yu. S.
Alaverdyan, E. V. Malysheva, M. V. Alfimov, J. A. K. Howard,
B. Eliasson and U. G. Edlund, Helv. Chim. Acta, 2002, 85, 60.
11 M. V. Alfimov, S. P. Gromov, Yu. V. Fedorov, O. A. Fedorova,
A. I. Vedernikov, A. V. Churakov, L. G. Kuz’mina, J. A. K.
Howard, S. Bossmann, A. Braun, M. Woerner, D. F. Sears and
J. Saltiel, J. Am. Chem. Soc., 1999, 121, 4992.
The titration experiments were performed in CD3CN solutions
at 25 ꢃ 1 1C. The concentration of acceptor (2a–4a, 2b–4b, 2c,
or 9) in solution was normally maintained at 1 ꢂ 10ꢁ3 M, and
the concentration of donor (1a or 1b) in the solution was
gradually increased, starting from nothing. The highest donor/
acceptor ratio was about 40. With the 1b/8 system, the con-
12 G. R. Desiraju, Chem. Commun., 1997, 1475.
N e w J . C h e m . , 2 0 0 5 , 2 9 , 8 8 1 – 8 9 4
893