3
(24). While it is conceivable that an equilibrium exists between
References and notes
ions 2 and 24, this type of equilibrium likely favors the oxonium
dication (24). Computational studies indicated that dication 2
possesses some anti-aromatic character due to electrostatic
1. Zhou, A.-H.; Pan, F.; Zhu, C. Ye, Chem. Eur. J. 2015, 21, 10278-
0288.
2. Shi, Y.; Gao, S. Tetrahedron 2016, 72, 1717-1735.
Kurdyukova, I. V.; Ishchenko, A. A. Russ. Chem. Rev. 2012, 81,
58-290.
4. Justin Thomas, K. R.; Baheti, A. Mat. Technol. 2013, 28, 71-87.
5. Rodriguez-Seco, C.; Cabau, L.; Vidal-Ferran, A.; Palomares, E.
Acct. Chem. Res. 2018, 51, 869-880.
1
9
effects on the fluorenyl cation -system. This type of electronic
3
.
destabilization should tend to enhance the reactivity of the
fluorenyl cation towards nucleophilic attack – forcing the
equilibrium toward oxonium ion 24. In the Ritter reaction,
acetonitrile reacts to form the dicationic nitrilium ion 25. There
have been reports to suggest dicationic nitrilium ions, such as 25,
2
6
.
Fischer, I.; Schenning, A. P. H. J. Org. Elect. 2013, 1-25.
1
1
7. a. Xu, S.; Chen, R.; Fu, Z.; Zhou, Q.; Zhang, Y.; Wang, J. ACS
Catal. 2017, 7, 1993-1997. b. Giuglio-Tonolo, A. G.; Terme, T.;
Vanelle, P. Molecules 2016, 21, 1408/1-1408/11. c. Corrie, T. J.
A.; Ball, L. T.; Russell, C. A.; Lloyd-Jones, G. C. J. Am. Chem.
Soc. 2017, 139, 245-254. d. Yao, S.; Kim, B.; Yue, X.; Colon
Gomez, M. Y.; Bondar, M. V.; Belfield, K. D. ACS Omega
may form adducts with the triflate ion. Nevertheless, ion 25 or
the corresponding triflate adduct provides the amide product
from aqueous workup. The proposed mechanism may explain
why excess superacid is needed to carry out the transformations.
The high acidity is necessary to generate an appreciable
concentration of the initial dicationic carboxonium ion (22).
Moreover, the superacidity is associated with conditions of
2
016, 1, 1149-1156. e. Li, C.; Zeng, H. J. Heterocyclic
Chem. 2016, 53, 1706-1714. f. Shi, G.; Chen, D.; Jiang, H.;
Zhang, Y.; Zhang, Y. Org. Lett. 2016, 18, 2958-2961.
1
2
extremely low nucleophilicity. This allows the fluorenyl
dication (2) to form in high concentrations, enabling good
conversions with the nitrile and alcohol nucleophiles.
8. Gasonoo, M.; Sumita, A.; Giuffre, K.; Boblak, K.; Ohwada, T.;
Klumpp, D. A., J. Org. Chem. 2017, 82, 6044-6053.
9
1
1
.
Sumita, A.; Ohwada, T.; Boblak, K.; Gasonoo, M.; Klumpp, D.
A., Chem. Eur. J. 2017,23, 2566-2570.
0. Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C. J. Phys. Chem.
C, 2014, 118, 15985-15994.
1. a. Yato, M.; Ohwada, T.; Shudo, K. J. Am. Chem. Soc. 1991, 113,
Conclusion
In summary, we have found that functionalized fluorenes may
be prepared by the reactions of superelectrophilic fluorenyl
cations with nitrogen (nitriles) and oxygen (alcohols)
nucleophiles. This work compliments our earlier study involving
6
4
91-698. b. Raja, E.; Klumpp, D. A. Tetrahedron 2011, 67, 4494-
497.
12. Olah, G. A.; Prakash, G. K. S.; Molnar, A. Sommer, J. Superacids,
nd
2
Ed.; Wiley: NY, NY, 2009.
3. Booth, B. L.; El-Fekky, T. L. J. Chem. Soc., Perkin Trans. 1,
979, 2441-2443.
1
the S Ar reactions of superelectrophilic fluorenyl cations and
E
1
their reactions with carbon nucleophiles (arenes). The chemistry
is only promoted by the use of excess triflic acid, which is
necessary to generate the dicationic intermediates in this
chemistry. Previously, the quantitative recycling of triflic acid
Supplementary Material
1
3
Experimental procedures, analytical data, and NMR spectra of
new compounds.
has been described.
Acknowledgments
We gratefully acknowledge the support of the NIH-NIGMS
for support of this work (1R15GM126498-01). We also thank Dr.
Makafui Gasonoo for preliminary studies in this chemistry.
Click here to remove instruction text...