Communication
ChemComm
7 H. Shi, R. T. Kwok, J. Liu, B. Xing, B. Z. Tang and B. Liu, J. Am. Chem.
Soc., 2012, 134, 17972–17981.
8 Y. Shi, Nat. Struct. Biol., 2001, 8, 394–401.
9 E. M. Creagh, H. Conroy and S. J. Martin, Immunol. Rev., 2003, 193,
10–21.
10 J. M. Buschhaus, B. Humphries, K. E. Luker and G. D. Luker, Cells,
2018, 7.
11 C. Gunther, E. Martini, N. Wittkopf, K. Amann, B. Weigmann,
H. Neumann, M. J. Waldner, S. M. Hedrick, S. Tenzer,
M. F. Neurath and C. Becker, Nature, 2011, 477, 335–339.
12 Y. Wang, X. Hu, J. Weng, J. Li, Q. Fan, Y. Zhang and D. Ye,
Angew. Chem., Int. Ed., 2019, 58, 4886–4890.
13 X. Liu, X. Song, D. Luan, B. Hu, K. Xu and B. Tang, Anal. Chem.,
2019, 91, 5994–6002.
14 Y. Yuan, C. J. Zhang, R. T. K. Kwok, D. Mao, B. Z. Tang and B. Liu,
Chem. Sci., 2017, 8, 2723–2728.
15 H. Li, G. Parigi, C. Luchinat and T. J. Meade, J. Am. Chem. Soc., 2019,
141, 6224–6233.
In summary, we have developed fluorescence-generating,
self-assembling nanofiber probes Nap-GFFpYDEVD-AFC and
Nap-GFFpYIETD-AFC for the analysis of apoptosis in living cells.
The formation of the nanofibers facilitate the uptake of the
probes by the cells. Once taken up by the cells, the probes can be
used to monitor the activation of either Caspase-3 or Caspase-8
in real-time, assisting the dissection of apoptosis signals, such as
the activation of Caspase-8 and subsequent activation of
Caspase-3. It is worth noting that the molecular structures of
these probes can be modified by replacing the characteristic
peptide sequences of the substrates recognized by other caspases
or proteases, thus opening up new avenues for real-time imaging
applications for a wide variety of biological processes.
This work was financial supported by National Natural
Science Foundation of China (NSFC) projects (grant no.
81672740, 81972687 and 81874167).
16 G. Liang, H. Ren and J. Rao, Nat. Chem., 2010, 2, 54–60.
17 D. Kovacs, X. Lu, L. S. Meszaros, M. Ott, J. Andres and K. E. Borbas,
J. Am. Chem. Soc., 2017, 139, 5756–5767.
18 Z. Xu, X. Liu, J. Pan and D. R. Spring, Chem. Commun., 2012, 48,
4764–4766.
19 S. Mizukami, R. Takikawa, F. Sugihara, M. Shirakawa and
K. Kikuchi, Angew. Chem., Int. Ed., 2009, 48, 3641–3643.
20 X. Wang, X. He, S. Hu, A. Sun and C. Lu, International journal of
experimental cellular physiology, biochemistry, and pharmacology,
Cell. Physiol. Biochem., 2015, 35, 1527–1536.
21 P. Reszka, R. Schulz, K. Methling, M. Lalk and P. J. Bednarski,
ChemMedChem, 2010, 5, 103–117.
22 H. He, S. Liu, D. Wu and B. Xu, Angew. Chem., Int. Ed., 2020, 59,
16445–16450.
23 I. Coin, M. Beyermann and M. Bienert, Nat. Protoc., 2007, 2,
3247–3256.
24 C. Ornelas, J. Broichhagen and M. Weck, J. Am. Chem. Soc., 2010,
132, 3923–3931.
25 R. Dahl, E. A. Sergienko, Y. Su, Y. S. Mostofi, L. Yang, A. M. Simao,
S. Narisawa, B. Brown, A. Mangravita-Novo, M. Vicchiarelli,
L. H. Smith, W. C. O’Neill, J. L. Millan and N. D. Cosford, J. Med.
Chem., 2009, 52, 6919–6925.
26 Y. Wu, D. Wang, X. Wang, Y. Wang, F. Ren, D. Chang, Z. Chang and
B. Jia, Cell. Physiol. Biochem., 2011, 27, 539–546.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 R. C. Taylor, S. P. Cullen and S. J. Martin, Nat. Rev. Mol. Cell Biol.,
2008, 9, 231–241.
2 T. Bergsbaken, S. L. Fink and B. T. Cookson, Nat. Rev. Microbiol., 2009, 7,
99–109.
3 F. Elvas, T. V. Berghe, Y. Adriaenssens, P. Vandenabeele,
K. Augustyns, S. Staelens, S. Stroobants, P. Van der Veken and
L. Wyffels, Org. Biomol. Chem., 2019, 17, 4801–4824.
4 J. Xiao, P. Broz, A. W. Puri, E. Deu, M. Morell, D. M. Monack and
M. Bogyo, J. Am. Chem. Soc., 2013, 135, 9130–9138.
5 S. Arguelles, A. Guerrero-Castilla, M. Cano, M. F. Munoz and
A. Ayala, Ann. N. Y. Acad. Sci., 2019, 1443, 20–33.
6 C. J. Vickers, G. E. Gonzalez-Paez and D. W. Wolan, J. Am. Chem.
Soc., 2013, 135, 12869–12876.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020