L. J. Charbonni e` re, R. Ziessel / Tetrahedron Letters 44 (2003) 6305–6307
6307
Scheme 3. Reagents and conditions: (i) [Pd(PPh ) Cl ], EtOH, Et N, CO (1 atm.), 70°C, 15 h, 68%; (ii) NaOH, EtOH, H O, 70°C,
3
2
2
3
2
3
h then conc. HCl, 88%.
starting material 4, and 6 was recovered in only 18%
after purification (protocol iii). The presence of traces
of water in the p-toluenesulfonic acid used probably
plays an important rule in this decomposition process.
As a result of the difficulties encountered during the
purification process, we decided to run the isomerisa-
tion process directly on the crude reaction mixture
obtained after aqueous work-up and to change p-TsOH
to CF CO H (protocol i). In these conditions, the iso-
Merbach, A. E.; B u¨ nzli, J.-C. G. J. Am. Chem. Soc. 2000,
122, 10810.
7. Reeves, Z. R.; Mann, K. L. V.; Jeffery, J. C.; McClev-
erty, J. A.; Ward, M. D.; Barigeletti, F.; Armaroli, N. J.
Chem. Soc., Dalton Trans. 1999, 349.
8. Sabbatini, N.; Guardigli, M.; Lehn, J.-M. Coord. Chem.
Rev. 1993, 123, 201.
9. (a) Armaroli, N.; Accorsi, G.; Barigelletti, F.; Couchman,
S. M.; Fleming, J. S.; Harden, N. C.; Jeffery, J. C.;
Mann, K. L. V.; McCleverty, J. A.; Rees, L. H.; Starling,
S. R.; Ward, M. D. Inorg. Chem. 1999, 38, 5769; (b)
Armaroli, N.; Barigelletti, F.; Ward, M. D.; McCleverty,
J. A. Chem. Phys. Let. 1997, 276, 435.
3
2
mer 7 is not isolated before the acidic treatment and 6
can be obtained in 38% overall yield after purification.
When 6 was submitted to a carboethoxylation reaction
promoted by palladium(0), the triethyl ester 8 was
isolated in fair yield, without any major side-reaction
10. Parks, J. E.; Wagner, B. E.; Holm, R. H. J. Organomet.
Chem. 1973, 56, 53.
11. ElGhayoury, A.; Ziessel, R. J. Org. Chem. 2000, 65, 7757.
12. Weibel, N.; Charbonni e` re, L. J.; Ziessel, R. F. J. Org.
(
Scheme 3). Such mild synthetic conditions are of great
interest as the use of more conventional procedures
such as halogen–metal exchanges often require the use
of hard bases which may led to deprotonation of the
Chem. 2002, 67, 7876.
13. Selected data for compound 7: H NMR (CDCl , 200
1
3
1
6
3
3
central carbon atom.
MHz): l 6.77 (d, 1H, J=2.0 Hz), 7.00 (d, 2H, J=2.5
3
4
Hz), 7.36 (dd, 2H, J=7.5 Hz, J=1.0 Hz), 7.41–7.44 (m,
3
In a final step, the ester functions were saponified in a
1
H), 7.52 (t, 2H, J=7.5 Hz), 7.59–7.69 (m, 3H), 7.84 (d,
3
3
4
methanol/water mixture containing NaOH and LH3
2H, J=2.5 Hz), 7.93 (dd, 2H, J=7.5 Hz, J=1.0 Hz),
.84 (s, 1H). C NMR (CDCl , 50 MHz): l 82.0, 106.3,
08.6, 119.3, 121.2, 127.1, 127.7, 131.8, 138.8, 139.6,
40.2, 140.9, 141.6, 141.7, 148.9, 152.0, 152.9. For com-
17
13
was recovered by acidification with concentrated HCl.
9
1
1
3
Preliminary experiments with lanthanide cations
showed the ligand to form stable [LnL] water soluble
complexes. In the case of europium and terbium, bright
red and green emissions were respectively observed
upon UV irradiation, indicative of a ligand to metal
energy transfer. The measured excited state lifetimes are
respectively of 0.28 and 1.00 ms for europium and
terbium in water with quantum yields of 2 and 15%,
respectively. Further experiments are currently in pro-
gress for a full characterisation of the photo-physical
1
parison, compound 6: H NMR (CDCl , 200 MHz): l
3
3
3
4
7
.07 (d, 3H, J=3 Hz), 7.42 (dd, 3H, J=8.0 Hz, J=1.0
3
3
Hz), 7.57 (t, 3H, J=7.5 Hz), 7.65 (d, 3H, J=2.5 Hz),
.93 (dd, 3H, J=7.5 Hz, J=1.0 Hz), 8.52 (s, 1H).
3
4
13
7
C
NMR (CDCl , 50 MHz): l 84.0, 107.0, 119.2, 127.5,
3
131.1, 139.0, 141.8, 152.4, 152.9.
1
1
4. Reger, D. L.; Grattan, T. C.; Brown, K. J.; Little, C. A.;
Lamba, J. J. S.; Rheingold, A. L.; Sommer, R. D. J.
Organomet. Chem. 2000, 607, 120.
5. Lee, C. S.; Allwine, D. A.; Barbachyn, M. R.; Grega, K.
C.; Dolak, L. A.; Ford, C. W.; Jensen, R. M.; Seest, E.
P.; Hamel, J. C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H.;
Zurenko, G. E.; Genin, M. J. Bioorg. Med. Chem. 2001,
18
properties of the ligand and complexes.
References
9
, 3243.
1
. (a) H u¨ ckel, W.; Bretschneidner, H. Ber. Dtsch. Chem.
Ges. 1937, 70, 2024; (b) Juli a` , S.; del Mazo, J. M.; Avila,
L.; Elgueo, J. J. Org. Prep. Proced. Int. 1984, 16, 299.
. Trofimenko, S. J. Am. Chem. Soc. 1966, 88, 1842.
. (a) Trofimenko, S. Chem. Rev. 1993, 93, 943; (b) Reger,
D. L.; Grattan, T. C.; Brown, K. J.; Little, C. A.; Lamba,
J. J. S.; Rheingold, A. L.; Sommer, R. D. J. Organomet.
Chem. 2000, 607, 120.
1
1
6. Kl a¨ ui, W.; Berghahn, M.; Rheinwald, G.; Lang, H.
Angew. Chem., Int. Ed. 2000, 39, 2464.
7. Selected data for LH : H NMR (d -DMSO): l 7.19 (d,
1
2
3
3
6
3
3
H, J=2.5 Hz), 7.99–8.10 (m, 6H), 8.15–8.20 (m, 3H),
3
13
8.22 (d, 3H, J=2.5 Hz), 9.35 (s, 1H). C NMR (d -ace-
6
tone): l 84.4, 107.6, 124.3, 126.8, 133.2, 139.8, 147.9,
151.7, 153.5, 165.6. FABMS: m/z 578.3 (100%, M+H ),
533.2
C H N O ·2HCl: C, 51.71; H, 3.25; N, 19.38. Found:
C, 51.59; H, 3.16; N, 19.29. IR: 2972, 2926, 2890, 1720,
1587, 1447, 1341, 1248, 1083, 1050.
+
+
4
5
. Kitajima, N.; Moro-Oka, Y. Chem. Rev. 1994, 94, 737.
. Humphrey, E. R.; Mann, K. L. V.; Reeves, Z. R.;
Behrendt, A.; Jeffery, J. C.; Maher, J. P.; McCleverty, J.
A.; Ward, M. D. New J. Chem. 1999, 23, 417.
(15,
M−CO
2
+H ).
Anal.
calcd
for
28 19 9 6
6. Fatin-Rouge, N.; T o´ th, E.; Perret, D.; Backer, R. H.;
18. Charbonni e` re, L.; Ziessel, R. manuscript in preparation.