4190 J. Phys. Chem. A, Vol. 101, No. 23, 1997
Becerra et al.
values from the two reaction pairs (1), (2) and (3), (4) differ by
2.51 kJ mol-1. While the error margins do not quite overlap at
one standard deviation uncertain, they do at two. The values
span the third law derived values. Small differences between
second and third law derived values commonly arise. The
second law values are usually less precise (and therefore less
reliable). This is because a second law value relies on
measurements of the values of the gradients of two Arrhenius
plots. Small distortions (unknown systematic errors) in the rate
constants at the temperature extremes of the kinetic study
(always the most demanding) can easily give rise to errors of a
few kJ mol-1 in activation energy values, even though rate
constant values themselves may be reliable to (5% in them-
selves. The judgment of the quality of a second-order value
for ∆H° of a reaction rests on how well the ∆S° value derived
from the A factor ratio fits the known or estimated ∆S° from
thermodynamic considerations. For both reactions of this study
the agreement is quite good, if not perfect. It is certainly
comparable with the best obtained for the equivalent H
abstraction reactions of I or Br atoms with alkanes.18,19
Nevertheless the third law values are much more precise,
especially in this case where ancillary thermodynamic quantities
are so reliable. The puzzle that remains, therefore, is the origin
of the discrepancy between this work and that of Chuang et
al.12 We can throw no more light on it except to indicate the
implications. If our results are correct, it means that D0(H-
CHO) ) 364.70 kJ mol-1, corresponding to a photodissociation
threshold for CH2O of λ ) 328.0 nm compared with 330.3 nm
observed.12 If Chuang, Foltz, and Moore12 are correct, it means
that either our measured rate constants are too large by ca. a
factor of 2 (1.8 for k2 at 500 K and 2.2 for k4 at 385 K) or k1
and k3 from the published studies4,16,17 are too small by
equivalent factors. Since there are two studies of k3 that are in
close agreement (rate constant differences are e14% over the
whole range 295-480 K), it seems unlikely that this value can
be seriously in error. The consistency of the kinetics makes it
appear unlikely that k1 is also in error. There is thus a strong
case for the reliability of the data based on kinetics.
(Spain) as well as British Gas (UK) to R.B. We thank Monty
Frey for helpful discussions and Ben Mason for preliminary
experimental measurements.
References and Notes
(1) Wayne, R. P. Chemistry of Atmospheres, 2nd ed.; Clarendon
Press: Oxford, UK, 1991.
(2) Warnatz, J. In Combustion Chemistry; Gardiner, W. C., Ed.;
Springer-Verlag: New York, 1984, Chapter 5.
(3) Berkowitz, J.; Ellison, G. B.; Gutman, D. J. Phys. Chem. 1994,
98, 2744.
(4) Walsh, R.; Benson, S. W. J. Am. Chem. Soc. 1966, 88, 4570.
(5) Warneck, P. Z. Naturforsch. A 1971, 26, 2047.
(6) Warneck, P. Z. Naturforsch. A 1974, 29, 350.
(7) Reilly, J. P.; Clark, J. H.; Moore, C. B.; Pimentel, G. C. J. Chem.
Phys. 1978, 69, 4381.
(8) Dyke, J. M.; Jonathan, N. B. H.; Morris, A.; Winter, M. J. Mol.
Phys. 1980, 39, 629.
(9) Moortgat, G. K.; Seiler, W.; Warneck, P. J. Chem. Phys. 1983, 78,
1185.
(10) Chase, M. W., Jr.; Davies, C. A.; Downey, J. R., Jr.; Frurip, D. J.;
MacDonald, R. A.; Syverud, A. N. JANAF Thermochemical Tables, 3rd
ed.; J. Phys. Chem. Ref. Data 1985, 14 (Suppl. 1).
(11) Timonen, R. S.; Ratajczak, E.; Gutman, D.; Wagner, A. F. J. Phys.
Chem. 1987, 91, 5325.
(12) Chuang, M-C.; Foltz, M. F.; Moore, C. B. J. Chem. Phys. 1987,
87, 3855.
(13) See ref 3 and references therein.
(14) Baggott, J. E.; Frey, H. M.; Lightfoot, P. D.; Walsh, R. Chem. Phys.
Lett. 1986, 132, 225.
(15) Baggott, J. E.; Frey, H. M.; Lightfoot, P. D.; Walsh, R. J. Phys.
Chem. 1987, 91, 3386.
(16) Nava, D. F.; Michael, J. V.; Stief, L. J. J. Phys. Chem. 1981, 85,
1896.
(17) Poulet, G.; Laverdet, G.; Le Bras, G. J. Phys. Chem. 1981, 85,
1892.
(18) Seetula, J. A.; Russell, J. J.; Gutman, D. J. Am. Chem. Soc. 1990,
112, 1347.
(19) Seakins, P. W.; Pilling, M. J.; Niiranen, J. T.; Gutman, D.;
Krasnoperov, L. N. J. Phys. Chem. 1992, 96, 9847.
(20) Niiranen, J. T.; Gutman, D.; Krasnoperov, L. N. J. Phys. Chem.
1992, 96, 5881.
(21) Gutman, D. Acc. Chem. Res. 1990, 23, 375.
(22) Seakins, P. W., Pilling, M. J. J. Phys. Chem. 1991, 95, 9874.
(23) Nicovitch, J. M.; van Dijk, C. A.; Kruetter, K. D.; Wine, P. H. J.
Phys. Chem. 1991, 95, 9890.
(24) Chen, Y.; Tschuikow-Roux, E.; Rauk, A. J. Phys. Chem. 1991,
95, 9832.
Although it is not our prime consideration to review theoreti-
cal work in this area, it is worth noting that the considerable
interest in the unimolecular dissociation of the CHO radical has
led to high-level calculations of its dissociation surface. The
(25) Chen, Y.; Rauk, A.; Tschuikow-Roux, E. J. Phys. Chem. 1991,
95, 9900.
(26) McEwan, A. B.; Golden, D. M. J. Mol. Struct. 1990, 224, 357.
(27) Carpenter, I. W. PhD Thesis, University of Reading, 1996.
(28) Vasudev, R.; Zare, R. N. J. Chem. Phys. 1982, 76, 5267.
(29) Fletcher, R. A.; Pilcher, G. Trans. Faraday Soc. 1970, 66, 794.
(30) Baggott, J. A.; Blitz, M. A.; Frey, H. M.; Walsh, R. J. Am. Chem.
Soc. 1990, 112, 8337.
(31) Becerra, R.; Walsh, R. In Research in Chemical Kinetics; Compton,
R. G., Hancock, G. M., Eds.; Elsevier: Amsterdam, 1995; Vol. 3, p 263.
(32) Russell, G. A. In Free Radicals; Kochi, J. K., Ed.; Wiley: New
York, 1973; Vol. 1, Chapter 7.
(33) Tedder, J. M. Tetrahedron 1982, 38, 313.
(34) Berces, T.; Marta, F. In Chemical Kinetics of Small Organic
Radicals; Alfassi, Z. B., Ed.; CRC: Boca Raton, FL, 1988; Vol. 2, Chapter
9.
(35) Von Wartenberg, H.; Lerner-Steinberg, B. Z. Angew. Chem. 1925,
38, 591.
most recent of these37 gives D0(H-CO) ) 54.98 kJ mol-1
,
corresponding to ∆Hf°(CHO) ) 47.61 kJ mol-1. The agreement
with experiment is reasonable, if we accept the the expressed
uncertainties of (4 kJ mol-1 of earlier theoretical calcula-
tions.38,39
It is also interesting to note the close similarity in values of
D(H-CHO) and D(CH3CO-H) for which the most recent
values are 373.8 ( 1.5 kJ mol-1 (experiment23) and 374.9 (
2.8 kJ mol-1 (theory40). It appears that Me-for-H replacement
in formaldehyde marginally increases the remaining aldehydic
C-H bond strength.
(36) Hartley, D. B. J. Chem. Soc., Chem. Commun. 1967, 1281.
(37) Werner, H-J.; Bauer, C.; Rosmus, P.; Keller, H-M.; Stumpf, M.;
Schinke, R. J. Chem. Phys. 1995, 102, 3593.
(38) Wagner, A. F.; Bowman, J. M. J. Phys. Chem. 1987, 91, 5314.
(39) Francisco, J. S.; Zhao, Y. J. Chem. Phys. 1990, 93, 9203.
(40) Bauschlicher, C. W., Jr. J. Phys. Chem. 1994, 98, 2564.
Acknowledgment. Support for this work was provided by
the UK EPSCR in the form of an earmarked studentship for
I.W.C. and by grant project PB94-0218-C02-O1 of the DGICYT